留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型螺栓连接CFRP薄壁C型柱轴压失效行为:试验及数值模拟

解江 宋山山 牟浩蕾 刘冰 冯振宇

解江, 宋山山, 牟浩蕾, 等. 典型螺栓连接CFRP薄壁C型柱轴压失效行为:试验及数值模拟[J]. 复合材料学报, 2021, 38(10): 3361-3372. doi: 10.13801/j.cnki.fhclxb.20201215.001
引用本文: 解江, 宋山山, 牟浩蕾, 等. 典型螺栓连接CFRP薄壁C型柱轴压失效行为:试验及数值模拟[J]. 复合材料学报, 2021, 38(10): 3361-3372. doi: 10.13801/j.cnki.fhclxb.20201215.001
XIE Jiang, SONG Shanshan, MOU Haolei, et al. Axial compression failure behavior of typical bolted CFRP thin-walled C-channels: Experimental and numerical simulation[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3361-3372. doi: 10.13801/j.cnki.fhclxb.20201215.001
Citation: XIE Jiang, SONG Shanshan, MOU Haolei, et al. Axial compression failure behavior of typical bolted CFRP thin-walled C-channels: Experimental and numerical simulation[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3361-3372. doi: 10.13801/j.cnki.fhclxb.20201215.001

典型螺栓连接CFRP薄壁C型柱轴压失效行为:试验及数值模拟

doi: 10.13801/j.cnki.fhclxb.20201215.001
基金项目: 天津市教委科研计划项目(2019KJ135)
详细信息
    通讯作者:

    冯振宇,博士,教授,博士生导师,研究方向为飞机结构强度  E-mail:caucstructure@163.com

  • 中图分类号: V214.8;TQ327.3;TB332

Axial compression failure behavior of typical bolted CFRP thin-walled C-channels: Experimental and numerical simulation

  • 摘要: 为了研究典型螺栓连接碳纤维增强树脂复合材料(CFRP)薄壁C型柱的轴压失效模式及吸能特性,进行了5组不同铺层方式C型柱的准静态轴压试验,即[0/90]4s、[±45]4s、[±45/902/04]s、[±45/90/02/90/02]s、[90/±45/0]2s,获得其失效形貌及载荷-位移曲线。采用Lavadèze单层壳单元模型、Puck-Yamada失效准则、层间胶粘单元及螺栓模型,建立C型柱层合壳模型进行轴压仿真,并与试验失效形貌、载荷-位移曲线及吸能特性评估指标进行对比分析。结果表明:0°、±45°、90°纤维可以显著影响C型柱轴压失效模式及吸能特性。在轴压载荷下,±45°纤维铺设C型柱发生局部屈曲失效模式,吸能特性差。±45°纤维铺设在外部,0°和90°纤维交替铺设在内部的C型柱,其轴压失效过程平稳,吸能特性好。与C型柱轴压试验结果相比,层合壳模型获得的整体变形和局部失效形貌吻合较好,载荷-位移曲线变化趋势和吸能特性评价指标基本一致。研究结果对CFRP薄壁C型柱吸能设计具有一定的指导意义。

     

  • 图  1  螺栓连接碳纤维增强树脂复合材料(CFRP)薄壁C型柱试件

    Figure  1.  Bolted carbon fiber reinforced polymer (CFRP) thin-walled C-channels

    图  2  试验设备

    Figure  2.  Test device

    图  3  [0/90]4s螺栓连接CFRP薄壁C型柱载荷-位移曲线

    Figure  3.  Force-displacement curve of bolted CFRP thin-walled [0/90]4s C-channel

    图  4  [0/90]4s螺栓连接CFRP薄壁C型柱失效形貌及层束弯曲失效模式

    Figure  4.  Failure morphology and layer beam bending mode of bolted CFRP thin-walled [0/90]4s C-channel

    图  5  [±45]4s螺栓连接CFRP薄壁C型柱载荷-位移曲线

    Figure  5.  Force-displacement curve of bolted CFRP thin-walled [±45]4s C-channel

    图  6  [±45]4s 螺栓连接CFRP薄壁C型柱失效形貌

    Figure  6.  Failure morphology of bolted CFRP thin-walled [±45]4s C-channel

    图  7  [±45/902/04]s螺栓连接CFRP薄壁C型柱载荷-位移曲线

    Figure  7.  Force-displacement curve of bolted CFRP thin-walled [±45/902/04]s C-channel

    图  8  [±45/902/04]s螺栓连接CFRP薄壁C型柱离面位移云图

    Figure  8.  Out-plane displacement of bolted CFRP thin-walled [±45/902/04]s C-channel

    图  9  [±45/902/04]s螺栓连接CFRP薄壁C型柱45°倒角端破坏过程[7]

    Figure  9.  Failure process of 45° chamfer of bolted CFRP thin-walled [±45/902/04]s C-channel [7]

    图  10  [±45/902/04]s螺栓连接CFRP薄壁C型柱失效形貌

    Figure  10.  Failure morphology of bolted CFRP thin-walled [±45/902/04]s C-channel

    图  11  [±45/90/02/90/02]s螺栓连接CFRP薄壁C型柱载荷-位移曲线

    Figure  11.  Force-displacement curve of bolted CFRP thin-walled [±45/90/02/90/02]s C-channel

    图  12  [±45/90/02/90/02]s 螺栓连接CFRP薄壁C型柱离面位移云图

    Figure  12.  Out-plane displacement of bolted CFRP thin-walled [±45/90/02/90/02]s C-channel

    图  13  [±45/90/02/90/02]s 螺栓连接CFRP薄壁C型柱失效形貌

    Figure  13.  Failure morphology of bolted CFRP thin-walled [±45/90/02/90/02]s C-channel

    图  14  [90/±45/0]2s螺栓连接CFRP薄壁C型柱载荷-位移曲线

    Figure  14.  Force-displacement curve of bolted CFRP thin-walled [90/±45/0]2s C-channel

    图  15  [90/±45/0]2s螺栓连接CFRP薄壁C型柱失效形貌及局部屈曲失效模式

    Figure  15.  Failure morphology and local buckling failure mode of bolted CFRP thin-walled [90/±45/0]2s C-channel

    图  16  螺栓连接CFRP薄壁C型柱一阶屈曲模态

    Figure  16.  First buckling mode of bolted CFRP thin-walled C-channels

    图  17  螺栓连接CFRP薄壁C型柱有限元模型

    Figure  17.  Finite element model of bolted CFRP thin-walled C-channel

    图  18  螺栓连接CFRP薄壁C型柱轴压仿真失效形貌

    Figure  18.  Simulated failure mode of bolted CFRP thin-walled C-channel

    图  19  [±45/90/02/90/02]s 螺栓连接CFRP薄壁C型柱仿真失效形貌

    Figure  19.  Simulated failure mode of bolted CFRP thin-walled [±45/90/02/90/02]s C-channel

    图  20  [±45/90/02/90/02]s螺栓连接CFRP薄壁C型柱载荷-位移曲线及失效过程

    Figure  20.  Force-displacement curve and failure process of bolted CFRP thin-walled [±45/90/02/90/02]s C-channel

    表  1  USN15000 CFRP性能参数

    Table  1.   USN15000 CFRP performance parameters

    DefinitionValue
    Density/(g·cm−3) 1.5
    Poisson's ratio ν12 0.3
    0° tension modulus/GPa 134
    0° tension strength/MPa 2158
    0° compression strength/MPa 1000
    90° tension modulus/GPa 8.3
    90°tension strength/MPa 42
    90° compression strength/GPa 9
    90° compression strength/MPa 172
    ±45° in-plan shear modulus/GPa 3.8
    ±45° in-plan shear modulus/MPa 75
    下载: 导出CSV

    表  2  螺栓连接CFRP薄壁C型柱FbFmax对比

    Table  2.   Comparison on Fb and Fmax among bolted CFRP thin-walled C-channels

    LayupFb/kNFmax/kN
    [0/90]4s 37.15 29.03
    [±45]4s 30.02 19.08
    [±45/902/04]s 45.89 28.04
    [±45/90/02/90/02]s 46.15 34.12
    [90/±45/0]2s 43.84 27.14
    Notes: Fb—Critical buckling load; Fmax—Initial peak crush load.
    下载: 导出CSV

    表  3  螺栓连接CFRP薄壁C型柱有限元模型中的材料参数

    Table  3.   Material parameters for bolted CFRP thin-walled C-channel finite element models

    ParameterValue
    Single layer plate density, RHO/(g·cm−3) 1.5
    Elastic modulus in fiber tensile direction, E0t1/GPa 134
    Elastic modulus in perpendicular fiber direction, E0t2/GPa 8.3
    Elastic modulus in fiber compressive direction, E0c1/GPa 116
    1,2 plane shear modulus, G012 3.69
    Poisson's ratio ν12/GPa 0.3
    Critical shear damage limit, Yc/GPa1/2 0.08
    Initional shear damage limit, Y0/GPa1/2 0.02
    Critical transverse damage limit, Yc/GPa1/2 0.08
    Initial transverse damage limit, Y0/GPa1/2 0.02
    Shear/transverse damage coupling factor 0
    Fiber-matrix interface brittle transverse damage limit,
    Ys/GPa1/2
    0.08
    Element shear fracture damage limit, Yr/GPa1/2 0.08
    Maximum allowable value of shear damage and transverse damage, Dmax 1
    Fiber tensile initial strain 0.0217
    Fiber tensile critical strain 0.025
    Compressive modulus correction factor 0
    Fiber compressive initial strain 0.01128
    Fiber compression critical strain 0.01228
    Tensile transverse strength of matrix, R22+/MPa 0.042
    Compressive strength of matrix, R22-/MPa 0.172
    Shear strength of matrix, R12/MPa 0.075
    Post-damage factor of matrix 0.96
    Slope 1 0.27
    Slope 2 0.27
    Fiber tensile failure strain, $\varepsilon _{11}^ + $ 0.02
    In-plane shear failure strain, $\varepsilon _{12}^ + $ 0.224
    Out-of-plane shear failure strain, $\varepsilon _{13}^ + $ 0.224
    Fiber compression failure strain, $\varepsilon _{11}^ - $ 0.02
    In-plane shear failure strain in compression, $\varepsilon _{12}^ - $ 0.224
    Out-of-plane shear failure strain in compression, $\varepsilon _{13}^ - $ 0.224
    下载: 导出CSV

    表  4  303-Slink-Elink-Tied单元参数

    Table  4.   Parameters of 303-Slink-Elink-Tied element

    ParameterValue
    Kinetic energy calculation distance, Hcont/mm 0.3
    Elastic modulus, E0/GPa 4
    Shear modulus, G0/GPa 2.5
    Continuous delamination normal stress/GPa 0.098
    Continuous delamination shear stress/GPa 0.094
    Type I fracture energy, $G_{\rm{u}}^{\rm{I}}$/(J·mm−2) 0.00047
    Type II fracture energy, $G_{\rm{u}}^{{\rm{II}}}$/(J·mm−2) 0.002
    Initial delamination normal stress/GPa 0.1
    Initial delamination shear stress/GPa 0.1
    Cycles of stress reduction 100
    Stiffness damping ratio 0.1
    下载: 导出CSV

    表  5  夹具和螺栓输入参数

    Table  5.   Material parameters of fixture and bolt

    ParameterValue
    Density, RHO/(kg·mm−3) 7.8×10−6
    Shear modulus, G/GPa 400
    Single stress-strain curve yield stress/GPa 2 000
    Tangent modulus of bilinear stress-strain curve, Et/GPa 200
    Buckling modulus, K/GPa 400
    下载: 导出CSV

    表  6  螺栓连接CFRP薄壁C型柱仿真与试验吸能特性评价指标对比

    Table  6.   Comparison on energy-absorbing metrics of bolted CFRP thin-walled C-channels’ between simulation and tests

    LayupEnergy-absorbing metrics
    Fmax/kNFmean/kNEa/JEs/(kJ·kg−1)
    [0/90]4s Test 29.03 8.45 996.31 30.10
    Simulation 32.01 8.91 1012.17 31.31
    Deviation 10.3% 5% 2% 0.6%
    [±45]4s Test 19.08 5.67 471.03 14.38
    Simulation 20.11 5.01 400.82 12.36
    Deviation 5% 12% 15% 14%
    [±45/902/04]s Test 28.04 9.85 1097.48 35.74
    Simulation 34.42 9.42 1054.31 34.60
    Deviation 21% 4% 4% 3%
    [±45/90/02/90/02]s Test 34.12 10.23 1259.97 38.35
    Simulation 35.21 10.41 1291.61 31.22
    Deviation 3% 2% 3% 3%
    [90/±45/0]2s Test 27.14 9.44 1181.91 33.99
    Simulation 30.31 9.21 1134.51 32.51
    Deviation 12.2% 2% 4% 4%
    Notes: Fmax—Initial peak crush load; Fmean—Mean crush load; Ea—Total energy absorption; Es—Specific energy absorption.
    下载: 导出CSV
  • [1] YANG Y, BOOM R, IRION B, et al. Recycling of composite materials[J]. Chemical Engineering & Processing Process Intensification,2012,51(1):53-68.
    [2] JUMAHAT A, SOUTIS C, JONES F, et al. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading[J]. Composite Structures,2010,92(2):295-305. doi: 10.1016/j.compstruct.2009.08.010
    [3] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences,2018,98:106-123. doi: 10.1016/j.paerosci.2018.03.008
    [4] MOU H L, XIE J, FENG Z Y. Research status and future development of crashworthiness of civil air-craft fuselage structures: An overview[J]. Progress in Aerospace Sciences,2020,119:1-22.
    [5] MAMALIS A G, ROBINSON M, MANOLAKOS D E, et al. Crashworthy capability of composite material structures[J]. Composite Structures,1997,37(2):109-134. doi: 10.1016/S0263-8223(97)80005-0
    [6] FARLEY G L, JONES R M. Energy-absorption capability of composite tubes and beams[R]. Washington DC: NASA, 1989.
    [7] HULL D. A unified approach to progressive crushing of fibre-reinforced composite tubes[J]. Composites Science and Technology,1991,40(4):377-421. doi: 10.1016/0266-3538(91)90031-J
    [8] PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and triggering modelling[J]. Polymer Testing,2010,29(6):729-741. doi: 10.1016/j.polymertesting.2010.05.010
    [9] REN Y R, JIANG H Y, LIU Z H. Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes[J]. International Journal of Mechanical Sciences,2019,157/158:1-12. doi: 10.1016/j.ijmecsci.2019.04.024
    [10] HEIMBS S, STROBL F, MIDDENDORF P. In-tegration of a composite crash absorber in aircraft fuselage vertical struts[J]. International Journal of Vehicle Structures and Systems,2011,3(2):87-95.
    [11] FERABOLI P, SPETZLER M. Design of energy-absorbing CFRP stanchions for the cargo floor structure of transport category airplanes[C]//JAMS. JAMS 2013 Technical Review Meeting. Washington DC: JAMS, 2013: 1-21.
    [12] OSTLER D, BLESSING E, PERL M, et al. A building block approach for crashworthiness testing of composites[C]// JAMS. JAMS 2019 Technical Review Meeting. Washington DC: JAMS, 2019: 1-30.
    [13] FERABOLI P, SPETZLER M. Design of energy-absorbing CFRP stanchions for the cargo floor structure of transport category airplane [EB/OL]. http://www.niar.wichita.edu/coe/cecam/design_of_energy_absorbing_cfrp_stanchuions-feraboli.pdf.
    [14] DEEPAK S. Crashworthy design and analysis of aircraft structures[D]. Philadelphia: Drexel University, 2013.
    [15] 解江, 张雪晗, 宋山山, 等. CFRP薄壁C型柱轴向压缩破坏机制及吸能特性[J]. 复合材料学报, 2018, 35(12):3261-3270.

    XIE Jiang, ZHANG Xuehan, SONG Shanshan, et al. Failure mechanism and energy-absorbing characteristics of CFRP thin-walled C-channels subject to axial compression[J]. Acta Materiae Compositae Sinica,2018,35(12):3261-3270(in Chinese).
    [16] 解江, 宋山山, 宋东方, 等. 复合材料C型柱轴压失效分析的层合壳建模方法[J]. 航空学报, 2019, 40(2):127-139.

    XIE Jiang, SONG Shanshan, SONG Dongfang, et al. Stacked shell modeling method for failure analysis of composite C-channels subject to axial compression[J]. Acta Aeronautica et Astronautica Sinica,2019,40(2):127-139(in Chinese).
    [17] RICCIO A, SAPUTO S, SELLITTO A, et al. On the crashworthiness behaviour of a composite fuselage Sub-floor component[J]. Composite Structures,2019,234:1-14.
    [18] BUSSADORI B P, SCHUDDENHAUER K, SCATTINA A. Modelling of CFRP crushing structures in explicit crash analysis[J]. Composites Part B: Engineer,2014,60:725-735. doi: 10.1016/j.compositesb.2014.01.020
    [19] CHERNIAEV A, BUTCHER C, MONTESANO J. Predicting the axial crush response of CFRP tubes using three damage-based constitutive models[J]. Thin-walled Structures,2018,129:349-364. doi: 10.1016/j.tws.2018.05.003
    [20] 冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报, 2019, 40(2):115-126.

    FENG Zhenyu, XIE Jiang, LI Henghui, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica,2019,40(2):115-126(in Chinese).
    [21] 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性研究[J]. 航空学报, 2019, 40(9):208-220.

    FENG Zhenyu, CHENG Kun, ZHAO Yifan, et al. Study on impact energy absorption characteristics of the lower structure of typical cargo floor of transportation aircraft[J]. Acta Aeronautica et Astronautica Sinica,2019,40(9):208-220(in Chinese).
    [22] 张雪晗. 复合材料薄壁结构轴向压溃吸能特性及吸能机理研究[D]. 天津: 中国民航大学, 2017.

    ZHANG Xuehan. Research on energy absorption characteristics and mechanism of composite thin-walled structure under axial compression[D]. Tianjin: Civil Aviation University of China, 2017(in Chinese).
    [23] MOU H L, XIE J, SU X, et al. Crashworthiness experiment and simulation analysis of composite thin-walled circular tubes under axial crushing[J]. Mechanics of Composite Materials,2019,55(1):121-134. doi: 10.1007/s11029-019-09797-x
    [24] PICKETT A K, JOHNSON A F, ROZICKY P. Computational methods for predicting impact damage in composite structures[J]. Composite Science and Technology,2001,61:2183-2192. doi: 10.1016/S0266-3538(01)00111-7
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  779
  • HTML全文浏览量:  429
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-07
  • 录用日期:  2020-12-01
  • 网络出版日期:  2020-12-15
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回