留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co2Ni1O4/不锈钢复合材料的制备及其电催化析氧性能

曾庆乐 刘小超 刘超 漆小鹏

曾庆乐, 刘小超, 刘超, 等. Co2Ni1O4/不锈钢复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2021, 38(11): 3764-3774. doi: 10.13801/j.cnki.fhclxb.20210223.005
引用本文: 曾庆乐, 刘小超, 刘超, 等. Co2Ni1O4/不锈钢复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2021, 38(11): 3764-3774. doi: 10.13801/j.cnki.fhclxb.20210223.005
ZENG Qingle, LIU Xiaochao, LIU Chao, et al. Synthesis and electrocatalytic oxygen evolution performances of Co2Ni1O4/stainless steel composites[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3764-3774. doi: 10.13801/j.cnki.fhclxb.20210223.005
Citation: ZENG Qingle, LIU Xiaochao, LIU Chao, et al. Synthesis and electrocatalytic oxygen evolution performances of Co2Ni1O4/stainless steel composites[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3764-3774. doi: 10.13801/j.cnki.fhclxb.20210223.005

Co2Ni1O4/不锈钢复合材料的制备及其电催化析氧性能

doi: 10.13801/j.cnki.fhclxb.20210223.005
基金项目: 江西省重点研发计划(20202BBEL53023);国家自然科学基金(22065015)
详细信息
    通讯作者:

    漆小鹏,博士,副教授,硕士生导师,研究方向为电解水催化材料 E-mail:qxpai@163.com

  • 中图分类号: TB331;TQ426

Synthesis and electrocatalytic oxygen evolution performances of Co2Ni1O4/stainless steel composites

  • 摘要: 电解水包括析氢反应(HER)与析氧反应(OER),由于OER是复杂的4电子转移过程,制作出具有优异耐久性的高活性的非贵金属OER电催化剂对于电解水至关重要。为了降低成本,选择304型不锈钢网(SS)作为基体,使用电沉积的方法制备钴-镍双氢氧化物,利用真空煅烧的方法制备钴-镍氧化物。使用XRD、SEM、TEM、XPS和电化学工作站对Co2Ni1O4/SS复合材料的晶体结构、形貌和电催化OER性能进行了研究。结果表明:电沉积制备的钴-镍双氢氧化物煅烧之后转变成尖晶石结构的钴-镍氧化物;在不锈钢表面成功合成了大量密集的层状结构;在1.0 mol/L KOH电解液中,Co2Ni1O4/SS电极表现出优异的OER电催化性能,达到10 mA·cm−2电流密度时所需要的过电位仅为240 mV,Tafel斜率为53.92 mV·dec−1,并且表现出优异的稳定性。

     

  • 图  1  不锈钢(SS)基 (a) 与碳布(CC)基 (b) Co2Ni1O4及其前驱体的XRD图谱

    Figure  1.  XRD patterns of the stainless steel (SS) based (a) and the carbon cloth (CC) based (b) Co2Ni1O4 and its precursors

    LDHs—Layered double hydroxides

    图  2  SS ((a),(b))、Co2Ni1-层状双氢氧化(LDHs)/SS ((c),(d)) 和Co2Ni1O4/SS ((e),(f)) 的SEM图像

    Figure  2.  SEM images of SS ((a),(b)), Co2Ni1-layered double hydroxides (LDHs)/SS ((c), (d)) and Co2Ni1O4/SS ((e),(f))

    图  3  Co2Ni1O4/SS的HRTEM图像 ((a), (b)),(b)中的插图为衍射图;Co2Ni1O4/SS的HAADF-STEM图像 (c)、对应的EDS元素映射图像Co (d)、Ni (e)和O (f)

    Figure  3.  HRTEM image of Co2Ni1O4/SS ((a), (b)), inset (b) shows the corresponding of diffraction image; HAADF-STEM image of Co2Ni1O4/SS (c) and corresponding EDS elemental mapping images of Co (d), Ni (e) and O (f) for Co2Ni1O4/SS

    图  4  Co2Ni1O4/SS的总谱 (a), Co2p (b), Ni2p (c)和O1s (d)的XPS能谱

    Figure  4.  XPS spectra of survey spectrum (a), Co2p (b), Ni2p (c) and O1s (d) for the Co2Ni1O4/SS

    图  5  Co2Ni1O4/SS等在1.0 mol/L KOH溶液中线性伏安法极化曲线 (a)、在10 mA·cm−2和100 mA·cm−2的过电位 (b)、由(a)导出的Tafel斜率图 (c)、计时电势法稳定性测试前后的极化曲线对比图 (d) 和多步计时电势相应曲线(插图)

    Figure  5.  Co2Ni1O4/SS in 1.0 mol/L KOH LSV polarization curves (a), overpotential at 10 mA·cm−2 and 100 mA·cm−2 (b); Tafel plots derived from (a) (c) , comparison of polarization curves before and after the chronopotentiometry stability test (d) and multistep chronopotentiometry responses curve (Inset)

    η10—Overpotential at current density of 10 mA·cm-2; η100—Overpotential at current density of 100 mA·cm-2; OSS—Annealed stainless steel

    图  6  Co1Ni2-LDHs/SS、Co2Ni1-LDHs/SS、Co3Ni0-层状单氢氧化物(LSHs)/SS、Co1Ni2O4/SS、Co2Ni1O4/SS、Co3Ni0O4/SS、SS和OSS的双层电容曲线 (a),电化学阻抗谱 (b) 和极化曲线归一化到电化学比表面积(ECSA) (c)

    Figure  6.  Capacitive current densities plotted against scan rate (a) and Nyquist plots (b) of the Co1Ni2-LDHs/SS, Co2Ni1-LDHs/SS, Co3Ni0-layered single hydroxides (LSHs)/SS, Co1Ni2O4/SS, Co2Ni1O4/SS, Co3Ni0O4/SS, SS and OSS and polarization curves normalized to the electrochemical specific surface area (ECSA) (c)

    j—Current density; Z—Impedance values; Rs—Resistance of the solution; Rct—Charge transfer resistance; CPE—Capacitance

    图  7  Co2Ni1O4/SS OER稳定性测试后的SEM图像

    Figure  7.  SEM image of Co2Ni1O4/SS after OER stability test

    图  8  Co2Ni1O4/SS OER稳定性测试前后的总谱(a), Co2p (b) , Ni2p (c)和O1s (d)的XPS光谱

    Figure  8.  XPS spectra of survey spectrum (a), Co2p (b), Ni2p (c), and O1s (d) for the Co2Ni1O4/SS before and after OER test

    表  1  本工作与引用文献之间的OER性能对比

    Table  1.   Comparisons of OER performance between this work and the data in references

    SampleElectrolyteOver potential (10 mA·cm−2)/mVTafel slope/(mV·dec−1)Reference
    Co2Ni1O4/SS 1.0 mol/L KOH 240 53.92 This work
    CoFe-LDH/RGO 1.0 mol/L KOH 325 43 [5]
    NiFe-LDHs/RGO 1.0 mol/L KOH 245 [7]
    α-(Ni-Co)(OH)X 1.0 mol/L KOH 255 [15]
    MoS2/rFe-NiCo2O4 1.0 mol/L KOH 270 39 [32]
    N-NiCo2O4@C@NF 1.0 mol/L KOH 242 86 [33]
    P-NiCo2O4 NWs/NF 1.0 mol/L KOH 300 120 [34]
    NiCo2O4 1.0 mol/L KOH 290 102 [35]
    NiCo2O4@N/S-C 1.0 mol/L KOH 285 53 [36]
    NiCo2O4/NiO 1.0 mol/L NaOH 360 61 [37]
    NiCo2O4@NiWS  1.0 mol/L KOH 290 95.2 [43]
    Ti3C2@mNiCoP NS 1.0 mol/L KOH 237 104 [44]
    FeCoNiOx@NG 1.0 mol/L KOH 320 55 [45]
    Note: NF, RGO, NWs, NS—Nickel foram, grephene oxide, nanowire, nanosheet.
    下载: 导出CSV
  • [1] JIA Y, JIANG K, WANG H, et al. The role of defect sites in nanomaterials for electrocatalytic energy conversion[J]. Chem,2019,5(6):1371-1397. doi: 10.1016/j.chempr.2019.02.008
    [2] CAI Z, BU X, WANG P, et al. Simple and cost effective fabrication of 3D porous core-shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A,2019,7(38):2172221729.
    [3] CHEN J, ZENG Q, QI X, et al. High-performance bifunctional Fe-doped molybdenum oxide-based electrocatalysts with in situ grown epitaxial heterojunctions for overall water splitting[J]. International Journal of Hydrogen Energy,2020,45(46):24828-24839. doi: 10.1016/j.ijhydene.2020.06.283
    [4] CAI Z, BU X, WANG P, et al. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A,2019,7(10):5069-5089. doi: 10.1039/C8TA11273H
    [5] HAN X, YU C, YANG J, et al. Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe-layered double hydroxide assembled on graphene[J]. Advanced Materials Interfaces,2016,3(7):1500782. doi: 10.1002/admi.201500782
    [6] ZHANG W, WU Y, QI J, et al. A thin nife hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency[J]. Advanced Energy Materials,2017,7(9):1602547. doi: 10.1002/aenm.201602547
    [7] YOUN D H, PARK Y B, KIM J Y, et al. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation[J]. Journal of Power Sources,2015,294:437-443. doi: 10.1016/j.jpowsour.2015.06.098
    [8] WU J, REN Z, DU S, et al. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly[J]. Nano Research,2016,9(3):713-725. doi: 10.1007/s12274-015-0950-4
    [9] ZHU S, LI J, DENG X, et al. Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes[J]. Advanced Functional Materials,2017,27(9):1605017. doi: 10.1002/adfm.201605017
    [10] LI H, MUSHARAVATI F, ZALENEZHAD E, et al. Electrodeposited Ni Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors[J]. Electrochimica Acta,2018,261:178-187. doi: 10.1016/j.electacta.2017.12.139
    [11] SUN H, YAN Z, LIU F, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials,2019,32(3):e1806326.
    [12] LIU T, LI P, YAO N, et al. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting[J]. Advanced Materials,2019,31(21):1806672. doi: 10.1002/adma.201806672
    [13] LYU Y, WANG R, TAO L, et al. In-situ evolution of active layers on commercial stainless steel for stable water splitting[J]. Applied Catalysis B: Environmental,2019,248:277-285. doi: 10.1016/j.apcatb.2019.02.032
    [14] LEE M, JEE M S, LEE S Y, et al. Sloughing a precursor layer to expose active stainless steel catalyst for water oxidation[J]. ACS Applied Materials & Interfaces,2018,10(29):24499-24507. doi: 10.1021/acsami.8b04871
    [15] BALOGUN M S, QIU W, HUANG Y, et al. Cost-effective alkaline water electrolysis based on nitrogen- and phosphorus-doped self-supportive electrocatalysts[J]. Advanced Materials,2017,29(34):1702095. doi: 10.1002/adma.201702095
    [16] BALRAM A, ZHANG H, SANTHANAGOPALAN S. Enhanced oxygen evolution reaction electrocatalysis via electrodeposited amorphous alpha-phase nickel-cobalt hydroxide nanodendrite forests[J]. ACS Applied Materials & Interfaces,2017,9(34):28355-28365. doi: 10.1021/acsami.7b05735
    [17] WANG F, QI X, QIN Z, et al. Construction of hierarchical Prussian Blue Analogue phosphide anchored on Ni2P@MoOx nanosheet spheres for efficient overall water splitting[J]. International Journal of Hydrogen Energy,2020,45(24):13353-13364. doi: 10.1016/j.ijhydene.2020.03.064
    [18] WANG F, CHEN J, QI X, et al. Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting[J]. Applied Surface Science,2019,481:1403-1411. doi: 10.1016/j.apsusc.2019.03.200
    [19] SUN H, TIAN C, LI Y, et al. Coupling NiCo alloy and CeO2 to enhance electrocatalytic hydrogen evolution in alkaline solution[J]. Advanced Sustainable Systems,2020,4(11):2000122. doi: 10.1002/adsu.202000122
    [20] CHEN J, WANG F, QI X, et al. A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions[J]. Electrochimica Acta,2019,326:134979. doi: 10.1016/j.electacta.2019.134979
    [21] ZHAN C, LIU Z, ZHOU Y, et al. Triple hierarchy and double synergies of NiFe/Co9S8/carbon cloth: A new and efficient electrocatalyst for the oxygen evolution reaction[J]. Nanoscale,2019,11(7):3378-3385. doi: 10.1039/C8NR09740B
    [22] ZHENG Z, DU X, WANG Y, et al. Efficient and stable NiCo2O4/VN nanoparticle catalyst for electrochemical water oxidation[J]. ACS Sustainable Chemistry & Engineering,2018,6(9):11473-11479.
    [23] CHEN S, YANG G, JIA Y, et al. Three-dimensional NiCo2O4@ NiWO4 core–shell nanowire arrays for high performance supercapacitors[J]. Journal of Materials Chemistry A,2017,5(3):1028-1034. doi: 10.1039/C6TA08578D
    [24] LIANG C, ZOU P, NAIRAN A, et al. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting[J]. Energy & Environmental Science,2020,13(1):86-95.
    [25] ZHANG X, KLAVER P, VAN SANTEN R, et al. Oxygen evolution at hematite surfaces: The impact of structure and oxygen vacancies on lowering the overpotential[J]. The Journal of Physical Chemistry C,2016,120(32):18201-18208. doi: 10.1021/acs.jpcc.6b07228
    [26] XIAO Y, HU T, ZHAO X, et al. Thermo-selenizing to rationally tune surface composition and evolve structure of stainless steel to electrocatalytically boost oxygen evolution reaction[J]. Nano Energy,2020,75:104949. doi: 10.1016/j.nanoen.2020.104949
    [27] ZHANG X, LI X, LI R, et al. Highly active core-shell carbon/nico2o4 double microtubes for efficient oxygen evolution reaction: Ultralow overpotential and superior cycling stability[J]. Small,2019,15(42):1903297. doi: 10.1002/smll.201903297
    [28] ZHOU X, LIU Z, WANG Y, et al. Facet effect of Co3O4 nanocrystals on visible-light driven water oxidation[J]. Applied Catalysis B: Environmental,2018,237:74-84. doi: 10.1016/j.apcatb.2018.05.067
    [29] ZHANG Y, DING F, DENG C, et al. Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction[J]. Catalysis Communications,2015,67:78-82. doi: 10.1016/j.catcom.2015.04.012
    [30] ZHANG L, GAO Z, LIU C, et al. Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor[J]. Journal of Materials Chemistry A,2015,3(6):2794-2801. doi: 10.1039/C4TA06440B
    [31] HU L, WU L, LIAO M, et al. Electrical transport properties of large, individual NiCo2O4 nanoplates[J]. Advanced Functional Materials,2012,22(5):998-1004. doi: 10.1002/adfm.201102155
    [32] LI J, CHU D, DONG H, et al. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides[J]. Journal of the American Chemical Society,2020,142(1):50-54. doi: 10.1021/jacs.9b10882
    [33] HA Y, SHI L, YAN X, et al. Multifunctional electrocatalysis on a porous N-Doped NiCo2O4@C nanonetwork[J]. ACS Applied Materials & Interfaces,2019,11(49):45546-45553.
    [34] CHU W, SHI Z, HOU Y, et al. Trifunctional of phosphorus-doped NiCo2O4 nanowire materials for asymmetric supercapacitor, oxygen evolution reaction, and hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces,2020,12(2):2763-2772.
    [35] CHEN Z, ZHAO B, HE Y C, et al. NiCo2O4 nanoframes with a nanosheet surface as efficient electrocatalysts for the oxygen evolution reaction[J]. Materials Chemistry Frontiers,2018,2(6):1155-1164. doi: 10.1039/C8QM00027A
    [36] YUAN Y, SUN L, LI Y, et al. Synergistic modulation of active sites and charge transport: N/S Co-doped C encapsulated NiCo2O4/NiO hollow microrods for boosting oxygen evolution catalysis[J]. Inorganic Chemistry,2020,59(6):4080-4089. doi: 10.1021/acs.inorgchem.0c00089
    [37] MAHALA C, BASU M. Nanosheets of NiCo2O4/NiO as efficient and stable electrocatalyst for oxygen evolution reaction[J]. ACS Omega,2017,2(11):7559-7567. doi: 10.1021/acsomega.7b00957
    [38] KANG Z, GUO H, WU J, et al. Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting[J]. Advanced Functional Materials,2019,29(9):1807031.1-1807031.10.
    [39] SHINAGAWA T, GARCIA-ESPARZA A T, TAKANABE K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Scientific Reports,2015,5:13801. doi: 10.1038/srep13801
    [40] ZHANG G, WANG H, YANG J, et al. Temperature effect on Co-based catalysts in oxygen evolution reaction[J]. Inorganic Chemistry,2018,57(5):2766-2772. doi: 10.1021/acs.inorgchem.7b03168
    [41] YAN D, LI Y, HUO J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials,2017,29(48):1606459. doi: 10.1002/adma.201606459
    [42] WANG Y, ZHOU T, JIANG K, et al. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes[J]. Advanced Energy Materials,2014,4(16):1400696. doi: 10.1002/aenm.201400696
    [43] ZHAO D, DAI M, LIU H, et al. Constructing high performance hybrid battery and electrocatalyst by heterostructured NiCo2O4@NiWS nanosheets[J]. Crystal Growth & Design,2019,19(3):1921-1929.
    [44] YUE Q, SUN J, CHEN S, et al. Hierarchical mesoporous MXene–NiCoP electrocatalyst for water-splitting[J]. ACS Applied Materials & Interfaces,2020,12(16):18570-18577.
    [45] JIANG R, BAKER D R, TRAN D T, et al. Multimetallic FeCoNiOx nanoparticles covered with nitrogen-doped graphene layers as trifunctional catalysts for hydrogen evolution and oxygen reduction and evolution[J]. ACS Applied Nano Materials,2020,3(7):7119-7129. doi: 10.1021/acsanm.0c01434
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2027
  • HTML全文浏览量:  939
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 录用日期:  2021-02-12
  • 网络出版日期:  2021-02-23
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回