留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

普鲁士蓝/氟化超支化聚氨酯复合涂层材料及其光热转换超疏水性能

杨晓昕 陈奇 张宏量 徐祖顺 易昌凤

杨晓昕, 陈奇, 张宏量, 等. 普鲁士蓝/氟化超支化聚氨酯复合涂层材料及其光热转换超疏水性能[J]. 复合材料学报, 2021, 38(12): 4014-4022. doi: 10.13801/j.cnki.fhclxb.20210215.002
引用本文: 杨晓昕, 陈奇, 张宏量, 等. 普鲁士蓝/氟化超支化聚氨酯复合涂层材料及其光热转换超疏水性能[J]. 复合材料学报, 2021, 38(12): 4014-4022. doi: 10.13801/j.cnki.fhclxb.20210215.002
YANG Xiaoxin, CHEN Qi, ZHANG Hongliang, et al. Prussian blue/fluorinated hyperbranched polyurethane composite coating material and its photothermal conversion superhydrophobic properties[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4014-4022. doi: 10.13801/j.cnki.fhclxb.20210215.002
Citation: YANG Xiaoxin, CHEN Qi, ZHANG Hongliang, et al. Prussian blue/fluorinated hyperbranched polyurethane composite coating material and its photothermal conversion superhydrophobic properties[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4014-4022. doi: 10.13801/j.cnki.fhclxb.20210215.002

普鲁士蓝/氟化超支化聚氨酯复合涂层材料及其光热转换超疏水性能

doi: 10.13801/j.cnki.fhclxb.20210215.002
基金项目: 湖北省重点研发计划项目(2020BAB087);国家自然科学基金面上项目(51573039)
详细信息
    通讯作者:

    易昌凤,教授,硕士生导师,研究方向为乳液聚合、超支化聚合物、特种涂料等 E-mail:changfengyi@hubu.edu.cn

  • 中图分类号: TB306

Prussian blue/fluorinated hyperbranched polyurethane composite coating material and its photothermal conversion superhydrophobic properties

  • 摘要: 首先制备氟化超支化聚氨酯(FHPU),然后与具有光热转化功能的普鲁士蓝(PB)纳米粒子复合,得到光热转换功能的PB/FHPU超疏水防结冰复合涂层材料。利用FTIR、TGA和DSC等测试分析了FHPU和PB/FHPU超疏水防结冰复合涂层材料的结构及性能,通过光热转换实验证明了复合涂层材料出色的光热性能;深入探究了PB纳米粒子的添加量对复合涂层材料表面性质和光热转化性能的影响。结果表明,当PB质量占FHPU的13%时,复合涂层材料可形成具有微纳结构的复合涂层,涂层表面最大接触角达157°,滚动角为1.8°。同时,该涂层在808 nm激光照射下10 s内温度可升高78.1℃,最高温度达到148.7℃。因而,光热转换功能性超疏水防结冰复合涂层材料具有良好的疏水、防结冰性能。

     

  • 图  1  氟化聚氨酯(FHPU)的合成

    Figure  1.  Synthesis route of fluorinated hyperbranched polyurethane (FHPU)

    PCDL—Polycarbonate diol; DBTDL—Dibutyltin dilaurate; TDI—Toluene diisocyanate

    图  2  超疏水涂层的制备

    Figure  2.  Preparation of the super-hydrophobic coatings

    图  3  FHPU和13%PB/FHPU的FTIR图谱

    Figure  3.  FTIR spectra of FHPU and 13%PB/FHPU

    图  4  FHPU和13%PB/FHPU的热重曲线

    Figure  4.  Thermogravimetric curves of FHPU and 13%PB/FHPU

    图  5  FHPU和13%PB/FHPU的差式扫描量热曲线

    Figure  5.  Differential scanning calorimetry curves of FHPU and 13%PB/FHPU

    图  6  涂层水接触角随PB含量的变化

    Figure  6.  Variation of coating water contact angle with PB content

    图  7  C元素的XPS图谱

    Figure  7.  XPS spectra of element C

    图  8  Fe元素的XPS图谱

    Figure  8.  XPS spectra of Fe element

    图  9  FHPU、13%PB/FHPU和PB的紫外光谱

    Figure  9.  Ultraviolet spectra of FHPU, 13%PB/FHPU and PB

    图  10  复合涂层的SEM图像

    Figure  10.  SEM images of composite coatings((a) FHPU; (b) 10%PB/FHPU; (c) 11%PB/FHPU; (d) 13%PB/FHPU; (e) 15%PB/FHPU; (f) 17%PB/FHPU; (g) 20%PB/FHPU; (h) PB)

    图  11  13%PB/FHPU的水接触角随磨损周期的变化

    Figure  11.  Water contact angle of 13%PB/FHPU varies with the wear cycle

    图  12  不同PB添加量的复合涂层光-热曲线

    Figure  12.  Light-heat curve of composite coatings with different PB addition amounts

    图  13  冻雨滴落 (a)、坍塌 (b)、回弹 (c) 和滚落 (d) 过程照片

    Figure  13.  Process photos of freezing rain dripping (a), collapse (b), rebound (c) and rolling (d)

    表  1  FHPU和13%普鲁士蓝(PB)/FHPU不同失重时的温度

    Table  1.   Temperature of mass loss of FHPU and 13% Prussian blue (PB)/FHPU

    SampleMass ratio of PB to FHPU/%
    10%PB/FHPU 10
    11%PB/FHPU 11
    13%PB/FHPU 13
    15%PB/FHPU 15
    17%PB/FHPU 17
    20%PB/FHPU 20
    下载: 导出CSV

    表  2  FHPU 和13%PB/FHPU不同失重时的温度

    Table  2.   Temperatures of mass loss of FHPU and 13%PB/FHPU

    Material Td5/℃ Td10/℃ Td50/℃
    FHPU 164 190 289
    13%PB/FHPU 174 189 296
    Notes: Td5—Temperature of mass loss 5%; Td10—Temperature of mass loss 10%; Td50—Temperature of mass loss 50%.
    下载: 导出CSV

    表  3  不同PB添加量复合涂层表面元素比例

    Table  3.   Surface element ratio of composite coating with different PB addition amounts

    ElementFHPU10%PB/
    FHPU
    13%PB/
    FHPU
    15%PB/
    FHPU
    C 66.30 59.26 50.72 49.32
    N 2.04 4.50 6.70 10.74
    O 22.62 20.57 16.78 18.26
    F 9.04 14.71 24.71 20.07
    Fe 0 0.96 1.09 1.61
    下载: 导出CSV

    表  4  不同照射时间复合涂层的温度

    Table  4.   Temperature of composite coatings with different irradiation time

    SampleTemperature
    of 10 s/℃
    Temperature
    of 10 min/℃
    FHPU 26.0 34.7
    10%PB/FHPU 64.4 106.2
    11%PB/FHPU 83.0 125.8
    13%PB/FHPU 98.1 148.7
    15%PB/FHPU 76.3 125.4
    17%PB/FHPU 77.6 119.2
    20%PB/FHPU 76.1 135.4
    下载: 导出CSV
  • [1] CUI S, LU S, XU W, et al. Fabrication of robust gold superhydrophobic surface on iron substrate with properties of corrosion resistance, self-cleaning and mechanical durability[J]. Journal of Alloys and Compounds,2017,728:271-281. doi: 10.1016/j.jallcom.2017.09.007
    [2] WANG F, SHEN T, LI C, et al. Low temperature self-cleaning properties of superhydrophobic surfaces[J]. Applied Surface Science,2014,317:1107-1112. doi: 10.1016/j.apsusc.2014.08.200
    [3] 孙怡坤, 李少萍. PTFE表面枝接纳米SiO2制备高效除油的超疏水材料[J]. 石油炼制与化工, 2020, 51(8):104-110.

    SUN Y K, LI S P. Preparation of superhydrophobic materials with high oil removal efficiency by grafting SiO2 NPS on PTFE surface[J]. Petroleum Processing and Petrochemicals,2020,51(8):104-110(in Chinese).
    [4] 刘帅卓, 张骞, 刘宁, 等. 三聚氰胺海绵的一步式协同超疏水改性及在油水分离中的应用[J]. 高等学校化学报, 2020, 41(3):521-529.

    LIU S Z, ZHANG Q, LIU N, et al. One-step synergistic hydrophobic modification of melamine sponge and its application[J]. Chemical Journal of Chinese Universities,2020,41(3):521-529(in Chinese).
    [5] BARTHWAL S, LIM S H. Robust and chemically stable superhydrophobic aluminum-alloy surface with enhanced corrosion-resistance properties[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2020,7(2):481-492. doi: 10.1007/s40684-019-00031-6
    [6] ZHANG Z, LI Z, HU Y, et al. Superhydrophobic copper surface fabricated by one-step immersing method in fatty acid salt aqueous solution for excellent anti-corrosion and oil/water separation properties[J]. Applied Physics A,2019,125(8):558. doi: 10.1007/s00339-019-2843-y
    [7] WANG J, ZHANG C, YANG C, et al. Superhydrophilic antireflective periodic mesoporous organosilica coating on flexible polyimide substrate with strong abrasion-resistance[J]. ACS Applied Materials & Interfaces,2017,9(6):5468-5476.
    [8] LV J, SONG Y, JIANG L, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano,2014,8(4):3152-3169. doi: 10.1021/nn406522n
    [9] KIM P, WONG T S, ALVARENGA J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano,2012,6(8):6569-6577. doi: 10.1021/nn302310q
    [10] HOWARTER J A, YOUNGBLOOD J P. Self-cleaning and next generation anti-fog surfaces and coatings[J]. Macromolecular Rapid Communications,2008,29(6):455-466. doi: 10.1002/marc.200700733
    [11] XIE C, LI C, XIE Y, et al. ZnO/acrylic polyurethane nanocomposite superhydrophobic coating on aluminum substrate obtained via spraying and Co-curing for the control of marine biofouling[J]. Surfaces and Interfaces,1920,22:100833.
    [12] GAO Y, GEREIGE I, EL LABBAN A, et al. Highly transparent and UV-resistant superhydrophobic SiO2-coated ZnO nanorod arrays[J]. ACS Applied Materials & Interfaces,2014,6(4):2219-2223.
    [13] KHALIL-ABAD M S, YAZDANSHENAS M E. Superhydrophobic antibacterial cotton textiles[J]. Journal of Colloid and Interface Science,2010,351(1):293-298. doi: 10.1016/j.jcis.2010.07.049
    [14] HUANG J, LYU S, CHEN Z, et al. A facile method for fabricating robust cellulose nanocrystal/SiO2 superhydrophobic coatings[J]. Journal of Colloid and Interface Science,2019,536:349-362. doi: 10.1016/j.jcis.2018.10.045
    [15] HUANG Z, XU W, WANG Y, et al. One-step preparation of durable super-hydrophobic MSR/SiO2 coatings by suspension air spraying[J]. Micromachines,2018,9(12):677. doi: 10.3390/mi9120677
    [16] CHEN K, ZHOU S, YANG S, et al. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules[J]. Advanced Functional Materials,2015,25(7):1035-1041. doi: 10.1002/adfm.201403496
    [17] WU Y, ZHOU S, YOU B, et al. Bioinspired design of three-dimensional ordered tribrachia-post arrays with re-entrant geometry for omniphobic and slippery surfaces[J]. ACS Nano,2017,11(8):8265-8272. doi: 10.1021/acsnano.7b03433
    [18] GAO H, CHI B, TIAN F, et al. Prussian blue modified metal organic frameworks for imaging guided synergetic tumor therapy with hypoxia modulation[J]. Journal of Alloys and Compounds, 2021, 853: 157329.
    [19] ZHANG Y, XIAO R, WANG S, et al. Oxygen vacancy enhancing Fenton-like catalytic oxidation of norfloxacin over prussian blue modified CeO2: Performance and mechanism[J]. Journal of Hazardous Materials,2020,398:122863.
    [20] MILAN G, KISHWOR P, CHUL S Y, et al. Prussian blue nano-particles: Synthesis, surface modification, and application in cancer treatment[J]. International Journal of Pharmaceutics,2018,549(1-2):31-49. doi: 10.1016/j.ijpharm.2018.07.055
    [21] KE X, GUO S, GOU B, et al. Superhydrophobic fluorine-containing protective coating to endow Al nanoparticles with long-term storage stability and self-activation reaction capability[J]. Advanced Materials Interfaces,2019,6(19):1901025. doi: 10.1002/admi.201901025
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1078
  • HTML全文浏览量:  636
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 录用日期:  2021-01-27
  • 网络出版日期:  2021-02-18
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回