留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2O3-Bi2WO6 直接Z-scheme异质结的制备、表征及光催化还原U(VI)的性能

李小燕 何登武 李冠超 王杨 曹小岗 刘义保

李小燕, 何登武, 李冠超, 等. Bi2O3-Bi2WO6 直接Z-scheme异质结的制备、表征及光催化还原U(VI)的性能[J]. 复合材料学报, 2021, 38(8): 2646-2654. doi: 10.13801/j.cnki.fhclxb.20201111.004
引用本文: 李小燕, 何登武, 李冠超, 等. Bi2O3-Bi2WO6 直接Z-scheme异质结的制备、表征及光催化还原U(VI)的性能[J]. 复合材料学报, 2021, 38(8): 2646-2654. doi: 10.13801/j.cnki.fhclxb.20201111.004
LI Xiaoyan, HE Dengwu, LI Guanchao, et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2646-2654. doi: 10.13801/j.cnki.fhclxb.20201111.004
Citation: LI Xiaoyan, HE Dengwu, LI Guanchao, et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2646-2654. doi: 10.13801/j.cnki.fhclxb.20201111.004

Bi2O3-Bi2WO6 直接Z-scheme异质结的制备、表征及光催化还原U(VI)的性能

doi: 10.13801/j.cnki.fhclxb.20201111.004
基金项目: 国家自然科学基金(41761090;11465002);江西省自然科学基金(20171ACB2021)
详细信息
    通讯作者:

    刘义保,博士,教授/硕士导师,研究方向为原子核物理与粒子物理 E-mail:ybliu@ecut.edu.cn

  • 中图分类号: TQ340.64;X703

Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation

  • 摘要: 根据能带理论,以Bi(NO3)3·5H2O为铋源,采用水热煅烧法制备了Bi2O3-Bi2WO6复合光催化材料,SEM、XRD、XPS、紫外可见漫反射(UV-vis DRS)、电化学阻抗(EIS)等表征手段对材料进行表征与分析,以U(VI)为目标污染物,在可见光下进行光催化还原U(VI)的性能研究。结果表明:与纯Bi2WO6相比,Bi2O3-Bi2WO6复合材料具有较高的光催化活性,当Bi2O3与Bi2WO6的摩尔比为2.4∶1时,Bi2O3-Bi2WO6的光催化活性最好,光催化活性增强归因于Bi2O3的加入,在Bi2O3与Bi2WO6界面形成的直接Z-scheme异质结,提高了光生电子-空穴的传输速率,降低了其复合率;另一方面,Bi2O3的加入使Bi2WO6带隙变小,扩大对可见光的响应范围,从而提高了Bi2O3-Bi2WO6光催化剂的活性。本研究为设计和合成具有高可见光活性的光催化剂和了解增强U(VI)光催化还原机理提供了新的思路。

     

  • 图  1  不同样品的SEM图像和EDS谱图

    Figure  1.  SEM images and EDS spectrum of samples with different proportion

    图  2  Bi2O3-Bi2WO6复合光催化材料的XRD图谱

    Figure  2.  XRD pattern of Bi2O3-Bi2WO6 composites

    图  3  Bi2O3-Bi2WO6复合光催化材料的XPS图谱

    Figure  3.  XPS spectra of Bi2O3-Bi2WO6 composites

    图  4  Bi2O3-Bi2WO6复合光催化材料的紫外可见漫反射吸收光谱(a)和禁带宽度(b)

    Figure  4.  UV-Vis diffuse reflectance spectra (a) and band gap (b) of Bi2O3-Bi2WO6 composites

    图  5  Bi2O3-Bi2WO6复合光催化材料的电化学阻抗谱(a)和瞬态光响应曲线(b)

    Figure  5.  Electrochemical impedance spectra (a) and transient photocurrent response curve (b) of Bi2O3-Bi2WO6 composites

    图  6  Bi2O3-BiWO6复合光催化材料光催化还原U(VI)的性能 (a) 和一级动力学曲线 (b)

    Figure  6.  Photocatalytic reduction by Bi2O3-BiWO6 composites (a) and first-order kinetics curves (b) of U(VI)

    图  7  甲醇对Bi2O3-Bi2WO6复合光催化材料光催化还原U(VI)活性的影响(a)和一级动力学曲线(b)

    Figure  7.  Effect of methanol on the photocatalytic activity of Bi2O3-Bi2WO6 composites (a) and first order kinetics curves (b)

    图  8  反应后Bi2O3-Bi2WO6中U的精细XPS图谱

    Figure  8.  XPS spectra of U in Bi2O3-Bi2WO6 after reaction

    图  9  Bi2O3-Bi2WO6复合光催化材料光催化还原U(VI)的机制

    Figure  9.  Mechanism of photocatalytic reduction of U(VI) by Bi2O3-Bi2WO6 composites

    图  10  Bi2O3-Bi2WO6复合光催化材料稳定性

    Figure  10.  Stability of Bi2O3-Bi2WO6 composites

  • [1] LIU C, SHU P C, XIE J, et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater[J]. Nature Energy,2017,2(4):17007. doi: 10.1038/nenergy.2017.7
    [2] 王宁, 庞宏伟, 于淑君, 等. 层状双羟基及其复合材料对放射性铀的吸附机理研究: 综述[J]. 化学学报, 2019, 77:143-152. doi: 10.6023/A18090404

    WANG Ning, PANG Hongwei, YU Shujun, et al. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: A review[J]. Acta Chimica Sinica,2019,77:143-152(in Chinese). doi: 10.6023/A18090404
    [3] 黄国林, 陈中胜, 梁喜珍, 等. 新型交联壳聚糖磁性微珠对U(VI)离子的吸附行为[J]. 化工学报, 2012, 63(3):834-840. doi: 10.3969/j.issn.0438-1157.2012.03.023

    HUANG Guolin, CHEN Zhongsheng, LIANG Xizhen, et al. Adsorption behavior of U(VI) ions from aqueous solution on novel cross-linked magnetic chitosan beads[J]. Journal of Chemical Industry and Engineering,2012,63(3):834-840(in Chinese). doi: 10.3969/j.issn.0438-1157.2012.03.023
    [4] SALOMONE V N, MEICHTRY J M, ZAMPIERI G, et al. New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol[J]. Chemical Engineering Journal,2015,261:27-35. doi: 10.1016/j.cej.2014.06.001
    [5] WANG Guanghui, ZHEN Jie, ZHOU Limin, et al. Adsorption and photocatalytic reduction of U(VI) in aqueous TiO2 suspensions enhanced with sodium formate[J]. Journal of Radioanalytical & Nuclear Chemistry,2015,304:579-585. doi: 10.1007/s10967-014-3831-5
    [6] 郭亚丹, 江海鸿, 卜显忠, 等. 锐钛矿型TiO2的低温制备及其光催化还原六价铀活性研究[J]. 陶瓷学报, 2016, 37(3):283-288.

    GUO Yadan, JIANG Haiou, PU Xianzhong, et al. Low-temperature synthesis and photocatalytic reduction of U(VI) of anatase TiO2[J]. Journal of Ceramics,2016,37(3):283-288(in Chinese).
    [7] WANG Jingjing, WANG Yun, WANG Wei. et al. Unable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI)[J]. Chemical Engineering Journal,2020,383:123-132.
    [8] 张小婧, 刘旸, 张骞, 等. 铋单质及其复合材料在光催化中的应用[J]. 化学进展, 2016, 28(10):1560-1568.

    ZHANG Xiaojing, LIU Yang, ZHANG Qian, et al. Bismuth and bismuth composite photocatalysts[J]. Progress in Chemistry,2016,28(10):1560-1568(in Chinese).
    [9] 郭琪瑶, 许辉, 郑宣清. Bi2WO6-SrTiO3异质结构光催化剂的合成及其光催化活性[J]. 广东化工, 2017, 44(9):39-41. doi: 10.3969/j.issn.1007-1865.2017.09.016

    GUO Qiyao, XU Hui, ZHENG Xuanqing. Synthesis and photocatalytic activity of Bi2WO6-SrTiO3 heterostructure photocatalysts[J]. Guangdong Chemical Industry,2017,44(9):39-41(in Chinese). doi: 10.3969/j.issn.1007-1865.2017.09.016
    [10] SITTIKORN Jonjana, ANUKORN Phuruangrat, SOMCHAI Thongtem, et al. Synthesis, characterization and photocatalysis of heterostructure Ag-Br/Bi2WO6 nanocompo-sites[J]. Materials Letters,2018,216:92-96. doi: 10.1016/j.matlet.2018.01.005
    [11] RUAN Xian, HU Yongyou. Effectively enhanced photodegradation of bisphenol a by in-situ g-C3N4-Zn/Bi2WO6 heterojunctions and mechanism study[J]. Chemosphere,2020,246:125782. doi: 10.1016/j.chemosphere.2019.125782
    [12] 李平, 李海金, 涂文广, 等. Z型光催化材料的研究进展[J]. 物理学报, 2015, 64(9):094209. doi: 10.7498/aps.64.094209

    LI Ping, LI Haijin, TU Wenguang, et al. Photocatalytic application of Z-type system[J]. Acta Physica Sinica,2015,64(9):094209(in Chinese). doi: 10.7498/aps.64.094209
    [13] 陈博才, 沈洋, 魏建红, 等. 基于g-C3N4的Z-Scheme光催化体系研究进展[J]. 物理化学学报, 2016, 32(6):1371-1382. doi: 10.3866/PKU.WHXB201603155

    CHEN Bocai, SHEN Yang, WEI Jianhong, et al. Research progress on g-C3N4-based Z-scheme photocatalytic system[J]. Acta Physico-Chimica Sinica,2016,32(6):1371-1382(in Chinese). doi: 10.3866/PKU.WHXB201603155
    [14] XU Quanlong, ZHANG Liuyang, YU Jiaguo, et al. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Materials Today,2018,21(10):1042-1063. doi: 10.1016/j.mattod.2018.04.008
    [15] CHEN Yongyang, XIE Xin, SI Yushan, et al. Constructing a novel hierarchical β-Ag2MoO4/BiVO4 photocatalyst with Z-scheme heterojunction utilizing Ag as an electron mediator[J]. Applied Surface Science,2019,498:143860. doi: 10.1016/j.apsusc.2019.143860
    [16] TANG Qiangyong, CHEN Wenfeng, LV Yanran, et al. Z-scheme hierarchical Cu2S/Bi2WO6 composites for improved photocatalytic activity of glyphosate degradation under visible light irradiation[J]. Separation and Purification Technology,2020,236:116243. doi: 10.1016/j.seppur.2019.116243
    [17] XU Quanlong, ZHANG Liuyang, CHENG Bei, et al. S-scheme heterojunction photocatalyst[J]. Chem,2020,6:1543-1559. doi: 10.1016/j.chempr.2020.06.010
    [18] 陈颖, 韩星月, 梁宏宝, 等. 微波蚀刻法合成RGO-BiOCl/Bi2WO6异质结光催化剂及其光催化活性[J]. 化工学报, 2018, 69(4):1758-1764.

    CHEN Yin, HAN Xingyue, LIANG Hongbao, et al. Synthesis and photocatalytic activity of RGO-BiOCl/Bi2WO6 heterojunction photocatalyst by microwave etching method[J]. Journal of Chemical Industry and Engineering (China),2018,69(4):1758-1764(in Chinese).
    [19] HE Wenjie, SUN Yanjun, JIANG Guangming, et al. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: Photocatalysis mechanism and reaction pathway[J]. Applied Catalysis B: Environmental, 2018, 232: 340-347.
    [20] BING Xingmei, LI Jia, LIU Jun, et al. Biomimetic synthesis of Bi2O3/Bi2WO6/Mg Al-CLDH hybrids from lotus pollen and their enhanced adsorption and photocatalysis performance[J]. Journal of Photochemistry & Photobiology A: Chemistry,2018,364:449-460.
    [21] WANG Tianye, XIAO Guosheng, LI Chenyang, et al. One-step synthesis of a sulfur doped Bi2WO6/Bi2O3 composite with enhanced visible-light photocatalytic activity[J]. Materials Letters,2015,138:81-84. doi: 10.1016/j.matlet.2014.09.106
    [22] CHEN Xi, LI Yixuan, LI Li. Facet-engineered surface and interface design of WO3/Bi2WO6 photocatalyst with direct Z-scheme heterojunction for efficient salicylic acid removal[J]. Applied Surface Science,2020,508:144796.
    [23] CHU Liangliang, ZHANG Jing, WU Zisheng, et al. Solar-driven photocatalytic removal of organic pollutants over direct Z-Scheme coral-branch shape Bi2O3/SnO2 compo-sites[J]. Materials Characterization,2020,159:110036. doi: 10.1016/j.matchar.2019.110036
    [24] 陈曦, 王永强, 刘敏敏, 等. Bi2O3/Bi2WO6异质结光催化剂的制备及其光催化活性[J]. 中国石油学报(石油加工科), 2019, 35(1):59-65.

    CHEN Xi, WANG Yongqiang, LIU Minmin, et al. Preparation and photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts[J]. Acta Petrolri Sinica (Petroleum Processing Section),2019,35(1):59-65(in Chinese).
    [25] WANG Tianye, LIU Shuxia, MAO Wei, et al. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(VI)[J]. Journal of Hazardous Materials,2020,389:121827. doi: 10.1016/j.jhazmat.2019.121827
    [26] GAO Xiaoming, ZHANG Rong, SHANG Yanyan, et al. Synergism of 3D g-C3N4 decorated Bi2WO6 microspheres with efficient visible light catalytic activity[J]. Journal of Physics and Chemistry of Solids,2018,119:19-28. doi: 10.1016/j.jpcs.2018.03.032
    [27] CUI Yuqi, LI Chaonengzi, GOU Jianfeng, et al. Fabrication of dual Z-scheme MIL-53(Fe)/α-Bi2O3/g-C3N4 ternary composite with enhanced visible light photocatalytic performance[J]. Separation and Purification Technology,2020,232:115959. doi: 10.1016/j.seppur.2019.115959
    [28] 郑先君, 陈萍萍, 赵梦,等. Cu2O/g-C3N4/Bi2WO6 三元复合光催化剂的制备及性能研究[J]. 化工学报, 2019, 47(12):191-196.

    ZHENG Xianjun, CHEN Pingping, ZHAO Meng, et al. Study on synthesis and property of Cu2O/g-C3N4/Bi2WO6 ternary photocatalyst[J]. New Chemical Materials,2019,47(12):191-196(in Chinese).
    [29] FENG Jun, JIANG Tao, HAN Yingchun, et al. Construction of dual Z-scheme Bi2S3/Bi2O3/WO3 ternary film with enhanced visible light photoelectrocatalytic performance[J]. Applied Surface Science,2020,505:144632. doi: 10.1016/j.apsusc.2019.144632
    [30] 陈克龙, 黄建华. g-C3N4-CdS-NiS复合纳米管的合成及其在可见光下H2生成的光催化活性[J]. 化工学报, 2020, 71(1):397-408.

    CHEN Kelong, HUANG Jianhua. g-C3N4-CdS-NiS compo-site nanotube: Synthesis and its photocatalytic activity for H2 generation under visible light[J]. Journal of Chemical Industry and Engineering (China),2020,71(1):397-408(in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  1806
  • HTML全文浏览量:  492
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 录用日期:  2020-10-25
  • 网络出版日期:  2020-11-12
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回