留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境温度和间隙对复合材料-金属混合结构机械连接钉载分配的影响

蔡启阳 赵琪

蔡启阳, 赵琪. 环境温度和间隙对复合材料-金属混合结构机械连接钉载分配的影响[J]. 复合材料学报, 2021, 38(12): 4228-4238. doi: 10.13801/j.cnki.fhclxb.20210301.005
引用本文: 蔡启阳, 赵琪. 环境温度和间隙对复合材料-金属混合结构机械连接钉载分配的影响[J]. 复合材料学报, 2021, 38(12): 4228-4238. doi: 10.13801/j.cnki.fhclxb.20210301.005
CAI Qiyang, ZHAO Qi. Effects of temperature and clearance fit on the load distribution of composite-metal hybrid structures[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4228-4238. doi: 10.13801/j.cnki.fhclxb.20210301.005
Citation: CAI Qiyang, ZHAO Qi. Effects of temperature and clearance fit on the load distribution of composite-metal hybrid structures[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4228-4238. doi: 10.13801/j.cnki.fhclxb.20210301.005

环境温度和间隙对复合材料-金属混合结构机械连接钉载分配的影响

doi: 10.13801/j.cnki.fhclxb.20210301.005
详细信息
    通讯作者:

    赵琪,博士,研究员,研究方向为民用飞机复合材料结构设计和强度工作 E-mail:zhaoqi1@comac.cc

  • 中图分类号: TB332;V214.8

Effects of temperature and clearance fit on the load distribution of composite-metal hybrid structures

  • 摘要: 通过有限元模拟与试验相结合的方式,研究环境温度和间隙对复合材料-金属混合结构连接钉载分配和强度的影响。分别建立双钉单剪和三钉单剪有限元模型,并在模型中综合考虑了接触、金属塑性和复合材料渐进损伤等因素,研究了不同温度和间隙情况下钉载的分配情况。研究表明,间隙对初始阶段钉载分配影响较大,但不影响塑性屈服阶段的钉载比例和承载能力;温度改变引起的热应力会带来额外的温度载荷,温度载荷对端部钉载影响较大,温度载荷与机械载荷叠加,会加剧端部钉载的分配不均。

     

  • 图  1  试件尺寸

    Figure  1.  Specimen size

    图  2  试验装置

    Figure  2.  Test setup

    图  3  复合材料-金属混合结构连接试件载荷-位移曲线

    Figure  3.  Load-displacement curves of composite-metal hybrid structure specimens

    图  4  复合材料-金属混合结构连接双钉单剪有限元模型

    Figure  4.  Finite element model of two bolts single-shear joints of composite-metal hybrid structure

    U1,U2, U3—Direction translation

    图  5  接触设置

    Figure  5.  Contact condition

    图  6  铝合金与钛合金应力-应变曲线

    Figure  6.  Stress-strain curves of aluminum and titanium

    图  7  复合材料-金属混合结构连接有限元与试验载荷-位移曲线

    Figure  7.  Load-displacement curves of FEM and tests of composite-metal hybrid structures

    图  8  复合材料-金属混合结构连接三钉单剪有限元模型

    Figure  8.  Finite element model of three bolts single-shear joints of composite-metal hybrid structure

    图  9  不同间隙量的复合材料-金属混合结构连接三钉单剪载荷-位移曲线

    Figure  9.  Load-displacement curves of three bolts single-shear joints of composite-metal hybrid structure at different clearance fits

    图  10  复合材料-金属混合结构连接三钉单剪理想配合钉载分配

    Figure  10.  Load distribution of bolts in three bolts single-shear joints of composite-metal hybrid structure with λ=0

    σg/σp—Far field stress of metal plate/proportional limit of metallic materials

    图  11  不同间隙情况下复合材料-金属混合结构连接三钉单剪钉载分配

    Figure  11.  Load distribution of bolts in three bolts single-shear joints of composite-metal hybrid structure with various clearance fits

    图  12  不同金属板厚度情况下复合材料-金属混合结构连接三钉单剪钉载分配

    Figure  12.  Load distribution of bolts in three bolts single-shear joints of composite-metal hybrid structure with different thickness of metal plate

    图  13  不同温度情况下复合材料-金属混合结构连接三钉单剪钉载分配

    Figure  13.  Load distribution of bolts in three bolts single-shear joints of composite-metal hybrid structure at different temperatures

    图  14  升温后钉的挤压应力云图

    Figure  14.  Contact stress distribution of bolts at high temperature

    图  15  不同温度情况下去除温度载荷后复合材料-金属混合结构连接三钉单剪钉载分配

    Figure  15.  Load distribution of bolts in three bolts single-shear joints of composite-metal hybrid structure with removing temperature-induced-load at different temperatures

    图  16  100℃情况下机械加载过程中复合材料-金属混合结构连接三钉单剪的钉载分配

    Figure  16.  Load distribution of bolts in three bolts single-shear joints of composite-metal hybrid structure as mechanical load increasing at 100℃

    图  17  其他温度情况下机械加载过程中复合材料-金属混合结构连接三钉单剪的钉载分配

    Figure  17.  Load distribution of bolts in three bolts single-shear joints of composite-metal hybrid structure as mechanical load increasing at 40℃, 60℃, 80℃

    图  18  不同温度情况下三钉载荷比例相同时的σg/σp

    Figure  18.  σg/σp at different temperatures as the three bolt loads approaching the same

    表  1  碳纤维增强环氧树脂复合材料单层板渐进损伤

    Table  1.   Degradation rules of the carbon fiber reinforced epoxy unidirectional tape lamina

    Failure modeE11/MPaE22/MPaE33/MPaν12ν13ν23G12/MPaG13/MPaG23/MPa
    No failure 166000 9600 9600 0.310 0.310 0.420 4600 4600 4600
    Fiber failure 33200 9600 9600 0.062 0.062 0.420 920 920 4600
    Matrix failure 166000 1920 9600 0.062 0.310 0.084 920 4600 920
    Delamination 166000 9600 1920 0.310 0.062 0.084 4600 920 920
    Notes: E—Elasticity modulus; ν—Poisson's ratio; G—Shear modulus.
    下载: 导出CSV

    表  2  复合材料-金属混合结构连接三钉单剪间隙配合分组

    Table  2.   Groups of clearance fit of three bolts single-shear joints of composite-metal hybrid structure

    GroupHole1 λ/%Hole2 λ/%Hole3 λ/%
    Nofit 0.0 0.0 0.0
    Fit05 0.5 0.5 0.5
    Fit10 1.0 1.0 1.0
    Fit15 1.5 1.5 1.5
    Fit10-00-10 1.0 0.0 1.0
    Fit10-05-10 1.0 0.5 1.0
    Note: λ—Ratio of clearance to bolt diameter.
    下载: 导出CSV
  • [1] 宋恩鹏, 刘文婷, 谢鸣九, 等. 刚度比对复合材料多钉连接钉载分配影响研究[J]. 飞机设计, 2005(4):29-32. doi: 10.3969/j.issn.1673-4599.2005.04.007

    SONG Enpeng, LIU Wenting, XIE Mingjiu, et al. Investigation of the influence of jointed member stiffness on fastener load distribution for composite multiple-bolted joint[J]. Aerocraft Design,2005(4):29-32(in Chinese). doi: 10.3969/j.issn.1673-4599.2005.04.007
    [2] 史红星, 王斌团. 复合材料层合板与金属板螺栓连接载荷分配研究[C]//中国航空学会. 第17届全国复合材料学术会议(复合材料力学分论坛)论文集. 中国航空学会: 北京中航时代文化传播有限公司, 2012: 6.

    SHI Hongxing, WANG Bintuan. Study of bolt load distribution of bolted joints of composite laminate with metal laps[C]//Chinese Society of Aeronautics and Astronautics. Proceeding of the 17th National Conference on Composite Materials. CSAA: Beijing AVIC Times Culture Communication Co. Ltd., 2012: 6(in Chinese).
    [3] 贾云超, 关志东, 宋晓君. 复合材料-金属机械连接性能研究[J]. 玻璃钢/复合材料, 2015(4):66-70, 10.

    JIA Yunchao, GUAN Zhidong, SONG Xiaojun. Study on performance of composite-metal mechanical joints[J]. Fiber Reinforced Plastics/Composites,2015(4):66-70, 10(in Chinese).
    [4] 孙永波, 程小全, 张纪奎, 等. 复合材料层合板沉头多钉连接钉载分配研究[J]. 高科技纤维与应用, 2013, 38(1):63-66, 74. doi: 10.3969/j.issn.1007-9815.2013.01.012

    SUN Yongbo, CHENG Xiaoquan, ZHANG Jikui, et al. Research of load distribution in multi-countersunk bolt joints on composite laminate[J]. Hi-Tech Fiber and Application,2013,38(1):63-66, 74(in Chinese). doi: 10.3969/j.issn.1007-9815.2013.01.012
    [5] 刘兴科, 李亚智, 刘向东, 等. 金属和复合材料多钉连接钉载分配研究[J]. 航空工程进展, 2011, 2(2):193- 198. doi: 10.3969/j.issn.1674-8190.2011.02.011

    LIU Xingke, LI Yazhi, LIU Xiangdong, et al. Study on load distribution of multiple-bolted metal to composite joints[J]. Advances in Aeronautical Science and Engineering,2011,2(2):193- 198(in Chinese). doi: 10.3969/j.issn.1674-8190.2011.02.011
    [6] 孙永波, 董艇舰, 刘昕, 等. 复合材料层板沉头连接钉载分配影响因素研究[J]. 中国民航大学学报, 2016, 34(3):57-61. doi: 10.3969/j.issn.1674-5590.2016.03.013

    SUN Yongbo, DONG Tingjian, LIU Xin, et al. Study on pin load distribution of multi-countersunk bolt composite laminate joints[J]. Journal of Civil Aviation University of China,2016,34(3):57-61(in Chinese). doi: 10.3969/j.issn.1674-5590.2016.03.013
    [7] 张俊琪. 钉孔配合对复合材料-金属连接静强度的影响机理研究[C]//中国航空学会. 第17届全国复合材料学术会议(复合材料力学分论坛)论文集. 中国航空学会: 北京中航时代文化传播有限公司, 2012: 6.

    ZHANG Junqi. The influence mechanism of bolt-hole interference fit conditions on static strength in composite-metal mechanical joints[C]//Chinese Society of Aeronautics and Astronautics. Proceeding of the 17th National Conference on Composite Materials. CSAA: Beijing AVIC Times Culture Communication Co. Ltd., 2012: 6(in Chinese).
    [8] 张俊琪, 刘龙权, 陈昆昆, 等. 干涉配合对复合材料机械连接结构承载能力的影响[J]. 上海交通大学学报, 2013, 47(11):1795-1800, 1806.

    ZHANG Junqi, LIU Longquan, CHEN Kunkun, et al. Influence of bolt-hole interference fit conditions on load capacity in composite mechanical joints[J]. Journal of Shanghai Jiaotong University,2013,47(11):1795-1800, 1806(in Chinese).
    [9] LIU L, ZHANG J, CHEN K, et al. Influences of asssambly parameters on the strength of bolted composite-metal joints under tensile loading[J]. Advanced Composite Materials,2013,22(5):339-359. doi: 10.1080/09243046.2013.824855
    [10] 邓文亮, 唐虎, 成竹. 温度对复材与金属混合结构钉载分配的影响[J]. 工程与试验, 2018, 58(3):27-30. doi: 10.3969/j.issn.1674-3407.2018.03.007

    DENG Wenliang, TANG Hu, CHENG Zhu. Influence of temperature on nail load distribution of composite and metal structures[J]. Engineering and Test,2018,58(3):27-30(in Chinese). doi: 10.3969/j.issn.1674-3407.2018.03.007
    [11] 朱梓珣. 飞机复合材料层合板与金属连接结构热效应分析[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHU Zixun. Thermal effect analysis of composite laminates and metal connections for aircraft[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [12] KAPIDZIC Z, NILSSON L, ANSELL H. Finite element modeling of mechanically fastened composite-aluminum joints in aircraft structures[J]. Composite Structure,2014,109:198-210. doi: 10.1016/j.compstruct.2013.10.056
    [13] EKHA Johan, SCHON Joakim. Load transfer in multirow, single shear, composite-to-aluminium lap joints[J]. Composites Science and Technology,2006,66:875-885. doi: 10.1016/j.compscitech.2005.08.015
    [14] EKHA J, SCHON J, MELIN L G. Secondary bending in multi fastener, composite-to-aluminium single shear lap joints[J]. Composites Part B: Engineering,2005,36(3):195-208. doi: 10.1016/j.compositesb.2004.09.001
    [15] EKHA Johan, SCHON Joakim. Finite element modeling and optimization of load transfer in multi-fastener joints using structural elements[J]. Composite Structures,2008,82(2):245-256. doi: 10.1016/j.compstruct.2007.01.005
    [16] LAWLOR V P, MCCARTHY M A, STANLEY W F. An experimental study of bolt-hole clearance effects in double-lap, multi-bolt composite joints[J]. Composite Structures,2005,71(2):176-190. doi: 10.1016/j.compstruct.2004.09.025
    [17] MCCARTHY M A, MCCARTHY C T, STANLEY W F. Bolt-hole clearance effects in composite joints[J]. Composite Joints and Connections: Principles, Modelling and Testing,2011:112-185.
    [18] ASTM. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961M—17[S]. West Conshohocken: American Society for Testing and Materials, 2017.
    [19] ASTM. Standard test method for bearing/bypass interaction response of polymer matrix composite laminates using 2-fastener specimens: ASTM D7248M—12(2017)[S]. West Conshohocken: American Society for Testing and Materials, 2017.
    [20] HASHIN Z. Failure criteria for unidirectional fiber composite[J]. Journal of Applied Mechanics,1980,47:329-334. doi: 10.1115/1.3153664
    [21] YE L. Role of matrix resin in delamination onset and growth in composite laminates[J]. Science and Technology, 1998, 33: 257-277.
    [22] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials,1999,33(24):2248-2280. doi: 10.1016/S1359-8368(02)00033-1
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  819
  • HTML全文浏览量:  349
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 录用日期:  2021-02-21
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回