留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性炭/高密度聚乙烯复合材料的力学性能

张庆法 任夏瑾 吴娟娟 于文凡 徐航 蔡红珍

张庆法, 任夏瑾, 吴娟娟, 等. 活性炭/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2020, 37(11): 1-9 doi:  10.13801/j.cnki.fhclxb.20200224.001
引用本文: 张庆法, 任夏瑾, 吴娟娟, 等. 活性炭/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2020, 37(11): 1-9 doi:  10.13801/j.cnki.fhclxb.20200224.001
Qingfa ZHANG, Xiajin REN, Juanjuan WU, Wenfan YU, Hang XU, Hongzhen CAI. Mechanical properties of activated carbon/high density polyethylene composites[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200224.001
Citation: Qingfa ZHANG, Xiajin REN, Juanjuan WU, Wenfan YU, Hang XU, Hongzhen CAI. Mechanical properties of activated carbon/high density polyethylene composites[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200224.001

活性炭/高密度聚乙烯复合材料的力学性能

doi: 10.13801/j.cnki.fhclxb.20200224.001
基金项目: 山东省自然科学基金(ZR2019MEE036);国家重点研发计划项目课题(2018YFD1101001);山东省泰山学者特聘专家工程专项;山东省高等学校优势学科人才团队培育计划
详细信息
    通讯作者:

    蔡红珍,博士,教授,博士生导师,研究方向为农业工程 E-mail:chzh666666@126.com

  • 中图分类号: TM332

Mechanical properties of activated carbon/high density polyethylene composites

  • 摘要: 以稻壳为原料,以H3PO4、KOH、ZnCl2为活化剂在600℃条件下制备三种活性炭,以生物炭、三种活性炭为填料填充高密度聚乙烯(HDPE)制备生物炭/HDPE复合材料和活性炭/HDPE复合材料,并对其力学性能进行测试和分析。结果表明,活性炭比生物炭具有更高的比表面积和发达的孔隙结构,其中经H3PO4活化制备的活性炭比表面积最高,为714.27 m2/g;活性炭/HDPE复合材料比生物炭/HDPE复合材料具有更佳的力学性能,相对于其他材料而言,经H3PO4活化制备的活性炭/HDPE复合材料具有较佳的弯曲性能、拉伸性能、刚性、弹性、抗蠕变性能及抗应力松弛能力,其弯曲强度、弯曲模量、拉伸强度、拉伸模量分别为38.66 MPa、2.46 GPa、32.17 MPa、1.95 GPa。本研究可为活性炭的材料化利用提供有益的借鉴经验。
  • 图  1  生物炭和三种活性炭的FTIR图谱

    Figure  1.  FTIR spectra of biochar and three activated carbons

    图  2  高密度聚乙烯(HDPE)、生物炭/HDPE复合材料和三种活性炭/HDPE复合材料的接触角

    Figure  2.  Contact angles of high density polyethylene (HDPE), biochar/HDPE composite and three activated carbon/HDPE composites

    图  3  HDPE、生物炭/HDPE复合材料和三种活性炭/HDPE复合材料的弯曲性能

    Figure  3.  Flexural properties of HDPE, biochar /HDPE composite and three activated carbon/HDPE composites

    图  4  HDPE、生物炭/HDPE复合材料和三种活性炭/HDPE复合材料的拉伸性能

    Figure  4.  Tensile properties of HDPE, biochar/HDPE composite and three activated carbon/HDPE composites

    图  5  HDPE、生物炭/HDPE复合材料和三种活性炭/HDPE复合材料的动态黏弹性

    Figure  5.  Dynamic visco-elasticity of HDPE, biochar /HDPE composite and three activated carbon/HDPE composites

    图  6  HDPE、生物炭/HDPE复合材料和三种活性炭/HDPE复合材料的蠕变行为

    Figure  6.  Creep behavior of HDPE, biochar/HDPE composite and three activated carbon/HDPE composites

    图  7  HDPE、生物炭/HDPE复合材料和三种活性炭/HDPE复合材料的应力松弛行为

    Figure  7.  Stress relaxation behavior of HDPE, biochar /HDPE composite and three activated carbon/HDPE composites

    图  8  生物炭、三种活性炭、生物炭/HDPE复合材料和三种活性炭/HDPE复合材料的SEM图像

    Figure  8.  SEM images of biochar, three activated carbons,biochar /HDPE composite and three activated /HDPE composites

    表  1  活性炭编号

    Table  1.   Number of activated carbon

    No.Activating agent
    HAC H3PO4
    KAC KOH
    ZnAC ZnCl2
    下载: 导出CSV

    表  2  生物炭和三种活性炭孔隙特性

    Table  2.   Pore characteristics of biochar and three activated carbons

    SampleSBET/(m2·g−1)Vtotal/(cm3·g−1)Dave/nm
    Biochar 297.36 0.15 8.96
    HAC 714.27 0.37 2.10
    KAC 486.18 0.28 2.32
    ZnAC 701.94 0.48 2.75
    Notes: SBET—Specific surface area; Vtotal—Total pore volume; Dave—Average pore size.
    下载: 导出CSV
  • [1] LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems: A review[J]. Mitigation and Adaptation Strategies for Global Change,2006,11(2):403-427. doi:  10.1007/s11027-005-9006-5
    [2] PAZ-FERREIRO J, NIETO A, MÉNDEZ A, et al. Biochar from biosolids pyrolysis: A review[J]. International Journal of Environmental Research and Public Health,2018,15(5):956-972. doi:  10.3390/ijerph15050956
    [3] 陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究[J]. 中国工程科学, 2011, 13(2):83-89. doi:  10.3969/j.issn.1009-1742.2011.02.015

    CHEN W F, ZHANG W M, MENG J, et al. Researches on biochar application technology[J]. Engineering Science,2011,13(2):83-89(in Chinese). doi:  10.3969/j.issn.1009-1742.2011.02.015
    [4] DAS O, SARMAH A K, BHATTACHARYYA D. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites[J]. Waste Management,2015,38:132-140. doi:  10.1016/j.wasman.2015.01.015
    [5] HO M P, LAU K T, WANG H, et al. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles[J]. Composites Part B: Engineering,2015,81:14-25. doi:  10.1016/j.compositesb.2015.05.048
    [6] 张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11):3044-3050.

    ZHANG Q F, YANG K Y, CAI H Z, et al. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3044-3050(in Chinese).
    [7] LI S, LI X, DENG Q, et al. Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties[J]. Materials and Design,2015,85:54-59. doi:  10.1016/j.matdes.2015.06.163
    [8] QIAN S, ZHANG H, YAO W, et al. Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites[J]. Composites Part B: Engineering,2018,133:203-209. doi:  10.1016/j.compositesb.2017.09.040
    [9] RICHHARD S, RAJADURAI J S, MANIKANDAN V. Effects of particle loading and particle size on tribological properties of biochar particulate reinforced polymer composites[J]. Journal of Tribology,2017,139(1):012202. doi:  10.1115/1.4033131
    [10] DAS O, BHATTACHARRYA D, HUI D, et al. Mechanical and flammability characterisations of biochar/polypropylene biocomposites[J]. Composites Part B: Engineering,2016,106:120-128. doi:  10.1016/j.compositesb.2016.09.020
    [11] ANDRZEJEWSKI J, MISRA M, MOHANTY A K. Polycarbonate biocomposites reinforced with a hybrid filler system of recycled carbon fiber and biocarbon: Preparation and thermomechanical characterization[J]. Journal of Applied Polymer Science,2018,135(28):46449. doi:  10.1002/app.46449
    [12] NAN N, DEVALLANCE D B, XIE X, et al. The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites[J]. Journal of Composite Materials,2016,50(9):1161-1168. doi:  10.1177/0021998315589770
    [13] GIORCELLI M, KHAN A, PUGNO N M, et al. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties[J]. Biomass and Bioenergy,2019,120:219-223. doi:  10.1016/j.biombioe.2018.11.036
    [14] CODOU A, MISRA M, MOHANTY A K. Sustainable biocarbon reinforced nylon 6/polypropylene compatibilized blends: Effect of particle size and morphology on performance of the biocomposites[J]. Composites Part A: Applied Science and Manufacturing,2018,112:1-10. doi:  10.1016/j.compositesa.2018.05.018
    [15] SHE D, DONG J, ZHANG J, et al. Development of black and biodegradable biochar/guttapercha composite films with high stretchability and barrier properties[J]. Composites Science and Technology,2019,175:1-5. doi:  10.1016/j.compscitech.2019.03.007
    [16] 王海莹, 余晓, 李穗奕, 等. 热塑性塑料/生物炭复合材料研究进展[J]. 工程塑料应用, 2018, 46(12):139-142. doi:  10.3969/j.issn.1001-3539.2018.12.027

    WANG H Y, YU X, LI S Y, et al. Research progress of thermoplastic/biomass charcoal composites[J]. Engeering Plastics Application,2018,46(12):139-142(in Chinese). doi:  10.3969/j.issn.1001-3539.2018.12.027
    [17] DAS O, SARMAH A K, BHATTACHRYYA D. A sustainable and resilient approach through biochar addition in wood polymer composites[J]. Science of the Total Environment,2015,512-513:326-336.
    [18] BEHAZIN E, MISRA M, MOHANTY A K. Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites[J]. Composites Part B: Engineering,2017,118:116-124. doi:  10.1016/j.compositesb.2017.03.003
    [19] LI S, HUANG A, CHEN Y J, et al. Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding[J]. Composites Part B: Engineering,2018,153:277-284. doi:  10.1016/j.compositesb.2018.07.049
    [20] POULOSE A M, ELNOUR A Y, ANIS A, et al. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics[J]. Science of the Total Environment,2017,619-620:311-318.
    [21] YANG Q, WANG X, LUO W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology,2018,247:537-544. doi:  10.1016/j.biortech.2017.09.136
    [22] SPESSATO L, BEDIN K C, CAZETTA A L, et al. KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles[J]. Journal of Hazardous Materials,2019,371:499-505. doi:  10.1016/j.jhazmat.2019.02.102
    [23] XING X, JIANG W, LI S, et al. Preparation and analysis of straw activated carbon synergetic catalyzed by ZnCl2-H3PO4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis[J]. Waste Management,2019,89:64-72. doi:  10.1016/j.wasman.2019.04.002
    [24] HUANG Y, MA E, ZHAO G. Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers[J]. Industrial Crops and Products,2015,69:447-455. doi:  10.1016/j.indcrop.2015.03.002
    [25] 张庆法, 蔡红珍, 周亮, 等. 含炭量对木炭/聚丙烯复合材料性能的影响[J]. 农业工程学报, 2018, 34(23):254-259. doi:  10.11975/j.issn.1002-6819.2018.23.033

    ZHANG Q F, CAI H Z, ZHOU L, et al. Effect of charcoal content on properties of charcoal/polypropylene composites[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(23):254-259(in Chinese). doi:  10.11975/j.issn.1002-6819.2018.23.033
    [26] DAS O, HEDENQVIST M S, JOHANSSON E, et al. An all-gluten biocomposite: Comparisons with carbon black and pine char composites[J]. Composites Part A: Applied Science and Manufacturing,2019,120:42-48. doi:  10.1016/j.compositesa.2019.02.015
    [27] 赵玲, 严兴, 尹平河, 等. 甘蔗渣制取活性炭的强度和稳定性研究[J]. 农业环境科学学报, 2009, 28(6):1298-1301. doi:  10.3321/j.issn:1672-2043.2009.06.036

    ZHAO L, YAN X, YIN P H, et al. Strength and stability study on activated charcoal abstracted from bagasse[J]. Journal of Agro-Environment Science,2009,28(6):1298-1301(in Chinese). doi:  10.3321/j.issn:1672-2043.2009.06.036
    [28] ZHANG Q, CAI H, REN X, et al. The dynamic mechanical analysis of highly filled rice husk biochar/high-density polyethylene composites[J]. Polymers,2017,9(11):628-638. doi:  10.3390/polym9110628
    [29] HUNG K C, WU T L, CHEN Y L, et al. Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites[J]. Construction and Building Materials,2016,108:139-145. doi:  10.1016/j.conbuildmat.2016.01.039
    [30] DAVIS A M, HANZLY L E, DEBUTTS B L, et al. Characterization of dimensional stability in flax fiber reinforced polypropylene composites[J]. Polymer Composites,2019,40(1):132-140. doi:  10.1002/pc.24614
    [31] OBAID N, KORTSCHOT M T, SAIN M. Predicting the stress relaxation behavior of glass-fiber reinforced polypropylene composites[J]. Composites Science and Technology,2018,161:85-91. doi:  10.1016/j.compscitech.2018.04.004
    [32] GEZAHEGN S, LAI R, HUANG L, et al. Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites[J]. Science of The Total Environment,2019,664:363-373. doi:  10.1016/j.scitotenv.2019.01.408
    [33] YANG X, KANG K, QIU L, et al. Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches[J]. Renewable Energy,2020,146:1691-1699. doi:  10.1016/j.renene.2019.07.148
    [34] LI S, LI X, CHEN C, et al. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network[J]. Composites Science and Technology,2016,132:31-37. doi:  10.1016/j.compscitech.2016.06.010
    [35] 姚文超, 钱少平, 盛奎川, 等. 超微竹炭增强聚丙烯复合材料的制备与性能[J]. 复合材料学报, 2017, 34(12):2661-2667.

    YAO W C, QIAN S P, SHENG K C, et al. Fabrication and properties of polypylene matrix composites reinforced by ultrafine bamboo-char[J]. Acta Materiae Compositae Sinica,2017,34(12):2661-2667(in Chinese).
  • [1] 周文英, 张财华, 李旭, 张帆, 张祥林.  基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能, 复合材料学报. 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
    [2] 周茜, 张瑶, 陈蓉, 沈佳斌, 郭少云.  SiO2表面改性对高填充SiO2/聚四氟乙烯复合薄膜性能的影响, 复合材料学报. 2020, 37(9): 2144-2151. doi: 10.13801/j.cnki.fhclxb.20191219.002
    [3] 薛彦庆, 郝启堂, 李新雷, 魏典, 李博, 余量量.  Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响, 复合材料学报. 2020, 37(): 1-10.
    [4] 曹金营, 曹贺, 欧阳求保, 张荻.  多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200306.002
    [5] 孙伟, 柏跃磊, 张强, 刘玉坤, 朱春城.  碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能, 复合材料学报. 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
    [6] 李哲, 黄尧, 吴刚强, 杜宇, 范晓静, 吴大鸣.  基于空间限域强制组装法制备短切碳纤维/乙烯-醋酸乙烯导电复合材料性能, 复合材料学报. 2020, 37(6): 1234-1242. doi: 10.13801/j.cnki.fhclxb.20190924.002
    [7] 王怡然, 高义民, 李烨飞, 赵四勇, 李梦婷.  石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响, 复合材料学报. 2020, 37(): 1-10.
    [8] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. 2020, 37(12): 1-18. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [9] 郭小农, 王丽, 罗永峰, 徐航, 邹家敏.  CFRP增强铝合金叠层复合材料短柱力学性能, 复合材料学报. 2020, 37(): 1-13.
    [10] 董晓星, 金明生, 王礼明, 康杰, 朱栋杰, 计时鸣.  用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1434-1441. doi: 10.13801/j.cnki.fhclxb.20191030.003
    [11] 刘秀玉, 张冰, 韩祥祥, 刘亚辉, 赵石旭, 唐刚.  空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能, 复合材料学报. 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
    [12] 汤龙其, 令旭霞, 王士华, 郭帅, 龙柱.  聚吡咯/碳纤维纸电热复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1426-1433. doi: 10.13801/j.cnki.fhclxb.20191021.002
    [13] 吴佳奇, 李刚, 杨小平, 苏清福.  耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能, 复合材料学报. 2020, 37(7): 1505-1512. doi: 10.13801/j.cnki.fhclxb.20191211.001
    [14] 王春红, 鹿超, 贾瑞婷, 陆鑫, 左恒峰, 王瑞.  洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能, 复合材料学报. 2020, 37(7): 1581-1589. doi: 10.13801/j.cnki.fhclxb.20191226.002
    [15] 阳雄南, 张效林, 聂孙建, 王哲, 卓光铭, 李少歌.  不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响, 复合材料学报. 2020, 37(5): 1033-1040. doi: 10.13801/j.cnki.fhclxb.20190902.002
    [16] 丁春香, 潘明珠, 杨舒心, 梅长彤.  基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为, 复合材料学报. 2020, 37(9): 2173-2182. doi: 10.13801/j.cnki.fhclxb.20200122.001
    [17] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [18] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [19] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(): 1-8. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [20] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1243-1250. doi: 10.13801/j.cnki.fhclxb.20191014.002
  • 加载中
计量
  • 文章访问数:  186
  • HTML全文浏览量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 录用日期:  2019-12-31
  • 网络出版日期:  2020-02-25

目录

    /

    返回文章
    返回