留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiCp/Cr15高铬铸铁复合材料的制备与性能

吕蓉 肖平安 顾景洪 古思敏 赵吉康

吕蓉, 肖平安, 顾景洪, 等. TiCp/Cr15高铬铸铁复合材料的制备与性能[J]. 复合材料学报, 2021, 38(9): 2964-2972. doi: 10.13801/j.cnki.fhclxb.20201119.001
引用本文: 吕蓉, 肖平安, 顾景洪, 等. TiCp/Cr15高铬铸铁复合材料的制备与性能[J]. 复合材料学报, 2021, 38(9): 2964-2972. doi: 10.13801/j.cnki.fhclxb.20201119.001
LV Rong, XIAO Ping’an, GU Jinghong, et al. Preparation and properties of TiCp/Cr15 high chromium cast iron composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2964-2972. doi: 10.13801/j.cnki.fhclxb.20201119.001
Citation: LV Rong, XIAO Ping’an, GU Jinghong, et al. Preparation and properties of TiCp/Cr15 high chromium cast iron composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2964-2972. doi: 10.13801/j.cnki.fhclxb.20201119.001

TiCp/Cr15高铬铸铁复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20201119.001
基金项目: 国家自然科学基金(51574119)
详细信息
    通讯作者:

    肖平安,博士,教授,博士生导师,研究方向为粉末冶金制备高性能高铬铸铁材料  E-mail:changcluj@163.com

  • 中图分类号: TB333

Preparation and properties of TiCp/Cr15 high chromium cast iron composites

  • 摘要: 以TiCp粉末和水雾化Cr15高铬铸铁粉末为原料,采用粉末冶金液相烧结技术制备TiCp增强高铬铸铁复合材料。研究了TiCp含量对高铬铸铁的物相组成、显微组织和力学性能的影响。研究结果表明,全致密的TiCp增强高铬铸铁基体复合材料的构成相为TiC、M7C3型碳化物、马氏体和少量奥氏体;随着TiCp添加量增大,金属基体逐步呈孤岛状,并在其中析出越来越多的M7C3型碳化物,同时TiCp逐步呈连续网状分布;同时,其硬度稳步提升,而抗弯强度和冲击韧性降低。当TiCp添加量为20wt%时烧结态复合材料具有最佳综合力学性能。此时硬度为HRC 66.8 ,冲击韧性为6.86 J/cm2,抗弯强度为1 343.10 MPa。当TiCp添加量为25wt%时硬度达到最大值HRC 67.20 。

     

  • 图  1  实验流程图

    Figure  1.  Experimental flowchart

    图  2  TiCp/HCCI复合材料烧结试样密度随温度变化曲线

    Figure  2.  Effect of sintering temperature on the density of TiCp/HCCI composites

    图  3  TiCp质量分数为15wt%、烧结温度分别为1 240℃和1 255℃的TiCp/HCCI试样

    Figure  3.  TiCp/HCCI samples with TiCp mass fraction of 15wt% and sintering temperature of 1 240℃ and 1 255℃

    图  4  不同TiCp含量TiCp/HCCI复合材料的XRD图谱

    Figure  4.  XRD patterns of TiCp/HCCI composites with different TiCp contents

    图  5  TiCp/HCCI复合材料的SEM图像

    Figure  5.  SEM images of TiCp/HCCI composites ((a) 0wt%; (b) 10wt%; (c) 15wt%; (d) 20wt%; (e) 25wt%; (f) 30wt%)

    图  6  TiCp含量为20wt%的TiCp/HCCI复合材料的EDS图象

    Figure  6.  EDS images of TiCp/HCCI composite with 20wt% TiCp

    图  7  TiCp含量对TiCp/HCCI复合材料硬度和冲韧的影响

    Figure  7.  Effect of TiCp content on hardness and toughness of TiCp/HCCI composites

    图  8  TiCp含量对TiCp/HCCI复合材料弯曲强度的影响

    Figure  8.  Effect of TiCp content on bending strength of TiCp/HCCI composites

    图  9  含15wt%TiCp的TiCp/HCCI复合材料的EDS图谱

    Figure  9.  EDS spectra of TiCp/HCCI composite with 15wt% TiCp

    图  10  不同TiCp含量的TiCp/HCCI复合材料抗弯断口SEM图像

    Figure  10.  SEM images of flexural fracture surface of TiCp/HCCI composites with different TiCp contents ((a) 10wt%; (b) 15wt%; (c) 20wt%; (d) 25wt%; (e) 30wt%)

    表  1  高铬铸铁(HCCI)粉末基本化学成分

    Table  1.   Basic chemical composition of high chromium cast iron (HCCI) powder

    ElementCCrMnSiFe
    Content/wt% 2.67 15.40 0.63 0.77 Balance
    下载: 导出CSV

    表  2  烧结TiCp/HCCI复合材料的相对密度

    Table  2.   Relative densities of sintered TiCp/HCCI composites

    TiCp content/wt%1015202530
    ρ1/(g·cm−3) 7.30 7.10 6.91 6.71 6.45
    ρ2/(g·cm−3) 7.48 7.27 7.08 6.89 6.71
    ρ/% 97.59 97.66 97.59 97.38 96.13
    Notes:ρ1—True density; ρ2—Theoretical density; ρ—Relative density.
    下载: 导出CSV
  • [1] 贾成厂, 孙兰. 工业的牙齿—硬质合金(1)[J]. 金属世界, 2011(4):7-9. doi: 10.3969/j.issn.1000-6826.2011.04.004

    JIA Chengchang, SUN Lan. Industrial teeth—Cemented carbide(1)[J]. Metal World,2011(4):7-9(in Chinese). doi: 10.3969/j.issn.1000-6826.2011.04.004
    [2] 范安平, 肖平安, 李晨坤, 等. TiC基钢结硬质合金的研究现状[J]. 粉末冶金技术, 2013, 31(4):298-303. doi: 10.3969/j.issn.1001-3784.2013.04.011

    FAN Anping, XIAO Ping’an, LI Chenkun, et al. Research status of TiC-based steel-bonded cemented carbide[J]. Powder Metallurgy Technology,2013,31(4):298-303(in Chinese). doi: 10.3969/j.issn.1001-3784.2013.04.011
    [3] 顾金宝, 高建, 时凯华, 等. 矿用WC-Co梯度硬质合金的制备及应用研究现状[J]. 稀有金属与硬质合金, 2019, 47(4):83-88.

    GU Jinbao, GAO Jian, SHI Kaihua, et al. Preparation and application research status of WC-Co gradient cemented carbide for mining[J]. Rare Metals and Cemented Carbides,2019,47(4):83-88(in Chinese).
    [4] 魏世忠, 徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报, 2020, 56(4):523-53.

    WEI Shizhong, XU Liujie. Research progress of steel wear-resistant materials[J]. Acta Metallurgica Sinica,2020,56(4):523-53(in Chinese).
    [5] TABRETT C P, SARE I R, GHOMASHCHI M R. Microstructure-property relationships in high chromium white iron alloys[J]. International Materials Reviews,1996,41(2):59-82. doi: 10.1179/imr.1996.41.2.59
    [6] DOGAN O N, HAWK J A, LAIRD G. Solidification structure and abrasion resistance of high chromium white irons[J]. Metallurgical and Materials Transactions A,1997,28(6):1315-1327. doi: 10.1007/s11661-997-0267-3
    [7] HANLON D N, RAINFORTH W M, SELLARS C M. The effect of spray forming on the microstructure and properties of a high chromium white cast iron[J]. Journal of Materials Science,1999,34(10):2291-2301. doi: 10.1023/A:1004573524282
    [8] FILIPOVIC M, KAMBEROVIC Z, KORAC M, et al. Microstructure and me-chanical properties of Fe-Cr-C-Nb white cast irons[J]. Materials & Design,2013,47:41-48.
    [9] HUANG, Tian-xing, et al. Microstructure and wear properties of SiC woodceramics reinforced high-chromium cast iron[J]. Ceramics International,2020,46(3):2592-2601.
    [10] 刘相熠, 郑开宏, 罗铁钢, 等. 自生TiC铁基复合材料的三体磨料磨损性能的工艺探究[J]. 铸造技术, 2018, 39(5):976-979.

    LIU Xiangyi, ZHENG Kaihong, LUO Tiegang, et al. Process research on the three-body abrasive wear performance of in-situ TiC iron-based composites[J]. Foundry Technology,2018,39(5):976-979(in Chinese).
    [11] 董晓蓉, 郑开宏, 王娟, 等. 铸造烧结法制备(Ti, W)C表面增强铁基复合材料[A]. 中国复合材料学会、杭州市人民政府. 第三届中国国际复合材料科技大会论文集[C]. 中国复合材料学会、杭州市人民政府: 中国复合材料学会, 2017: 7.

    DONG Xiaorong, ZHENG Kaihong, WANG Juan, et al. Preparation of (Ti, W)C surface-reinforced iron-based composites by casting and sintering method[A]. Chinese Society for Composite Materials, Hangzhou Municipal People’s Government. The 3rd China International Composites Technology Conference Proceedings[C]. China Society for Composite Materials, Hangzhou Municipal People's Government: China Society for Composite Materials, 2017: 7(in Chinese).
    [12] 王娟, 郑开宏. ZTA颗粒增强铁基复合材料的高温磨料磨损性能研究[J]. 热加工工艺, 2018, 47(10):101-105, 109.

    WANG Juan, ZHENG Kaihong. Research on high temperature abrasive wear performance of ZTA particle reinforced iron-based composites[J]. Hot Working Technology,2018,47(10):101-105, 109(in Chinese).
    [13] 姜吉鹏, 李世波, 胡树郡, 等. 添加TiC对高铬铸铁性能的影响[J]. 稀有金属材料与工程, 2020, 49(2):701-705.

    JIANG Jipeng, LI Shibo, HU Shujun, et al. The effect of adding TiC on the properties of high chromium cast iron[J]. Rare Metal Materials and Engineering,2020,49(2):701-705(in Chinese).
    [14] 周玉成, 魏世忠, 徐流杰, 等. Al2O3颗粒增强钢铁基复合材料的研究进展[J]. 热加工工艺, 2010, 39(20):87-90. doi: 10.3969/j.issn.1001-3814.2010.20.027

    ZHOU Yucheng, WEI Shizhong, XU Liujie, et al. Research progress of Al2O3 particle reinforced steel matrix composites[J]. Hot Working Technology,2010,39(20):87-90(in Chinese). doi: 10.3969/j.issn.1001-3814.2010.20.027
    [15] BOCANEGRA-BERNAL M H. Hot isostatic pressing (HIP) technology and its applications to metals and ceramics[J]. Journal of Materials Science,2004,39(21):6399-6420. doi: 10.1023/B:JMSC.0000044878.11441.90
    [16] GU J H, XIAO P G, SONG J Y, et al. Sintering of a hypoeutectic high chromium cast iron as well as its microstructure and properties[J]. Journal of Alloys and Compounds,2018,740:485-491. doi: 10.1016/j.jallcom.2017.11.189
    [17] 李忠涛, 肖平安, 顾景洪, 等. 烧结Cr15高铬铸铁组织与性能的研究[J]. 材料科学与工艺, 2020, 28(01):7-16.

    LI Zhongtao, XIAO Ping’an, GU Jinghong, et al. Research on the structure and properties of sintered Cr15 high chromium castiron[J]. Materials Science and Technology,2020,28(01):7-16(in Chinese).
    [18] LEON C A, DREW R A L. Preparation of nickel-coated powders as precursors to reinforce MMCs[J]. Journal of Materials Science,2000,35(19):4763-4768. doi: 10.1023/A:1004860326071
    [19] OZBEN T, KILICKAP E, CAK1R O. Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC[J]. Journal of Materials Processing Technology,2008,198(1-3):220-225. doi: 10.1016/j.jmatprotec.2007.06.082
    [20] 汝娟坚, 贺涵. 陶瓷增强钢铁基复合材料中基体与陶瓷的选择[J]. 科技创新与应用, 2019(17):127-128.

    RU Juanjian, HE Han. The choice of matrix andceramics in ceramic reinforced steel matrix composites[J]. Science and Technology Innovation and Application,2019(17):127-128(in Chinese).
    [21] 卢瑞青, 肖平安, 宋建勇, 等. 新型烧结高铬铸铁的冲击磨粒磨损性能[J]. 粉末冶金材料科学与工程, 2018, 23(1):70-77. doi: 10.3969/j.issn.1673-0224.2018.01.010

    LU Ruiqing, XIAO Ping'an, SONG Jianyong, et al. Impact abrasive wear resistance of a new type of sintered high chromium cast iron[J]. Materials Science and Engineering of Powder Metallurgy,2018,23(1):70-77(in Chinese). doi: 10.3969/j.issn.1673-0224.2018.01.010
    [22] 郭继伟, 刘钦雷, 荣守范, 等. 碳化钛系钢结硬质合金的研究现状[J]. 铸造设备与工艺, 2010(1):48-54. doi: 10.3969/j.issn.1674-6694.2010.01.015

    GUO Jiwei, LIU Qinlei, RONG Shoufan, et al. Research status of titanium carbide series steel-bonded cemented carbide[J]. Foundry Equipment and Technology,2010(1):48-54(in Chinese). doi: 10.3969/j.issn.1674-6694.2010.01.015
    [23] 肖平安, 肖璐琼, 顾景洪, 等. 15Cr系亚共晶高铬铸铁的烧结制备与性能研究[J]. 湖南大学学报(自然科学版), 2019, 46(12):58-64.

    XIAO Ping’an, XIAO Luqiong, GU Jinghong, et al. Sintering preparation and properties of 15Cr hypoeutectic high chromium cast iron[J]. Journal of Hunan University (Natural Science Edition),2019,46(12):58-64(in Chinese).
    [24] 周瑞. 粉末冶金M3: 2高速钢烧结行为及力学性能研究[D]. 哈尔滨工业大学, 2008.

    ZHOU Rui. Research on sintering behavior and mechanical properties of powder metallurgy M3: 2 high speed steel[D]. Harbin Institute of Technology, 2008(in Chinese).
    [25] ZHANG X, SUN Y, NIU M, et al. Microstructureand mechanical behavior of in situ TiC reinforced Fe3Al(Fe-23Al-3Cr) matrix composites by mechanical alloying and vacuum hot-pressing sintering technology[J]. Vacuum,2020,180:109544. doi: 10.1016/j.vacuum.2020.109544
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  875
  • HTML全文浏览量:  426
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24
  • 录用日期:  2020-11-08
  • 网络出版日期:  2020-11-19
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回