留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切载荷下温度和应变率对碳纤维增强聚醚醚酮复合材料强化行为的影响

姚晨熙 齐振超 陈文亮 张晨群

姚晨熙, 齐振超, 陈文亮, 等. 剪切载荷下温度和应变率对碳纤维增强聚醚醚酮复合材料强化行为的影响[J]. 复合材料学报, 2021, 38(8): 2578-2585. doi: 10.13801/j.cnki.fhclxb.20201015.001
引用本文: 姚晨熙, 齐振超, 陈文亮, 等. 剪切载荷下温度和应变率对碳纤维增强聚醚醚酮复合材料强化行为的影响[J]. 复合材料学报, 2021, 38(8): 2578-2585. doi: 10.13801/j.cnki.fhclxb.20201015.001
YAO Chenxi, QI Zhenchao, CHEN Wenliang, et al. Effects of temperature and strain rate on hardening behavior of carbon fiber reinforced polyether ether ketone composite under shear load[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2578-2585. doi: 10.13801/j.cnki.fhclxb.20201015.001
Citation: YAO Chenxi, QI Zhenchao, CHEN Wenliang, et al. Effects of temperature and strain rate on hardening behavior of carbon fiber reinforced polyether ether ketone composite under shear load[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2578-2585. doi: 10.13801/j.cnki.fhclxb.20201015.001

剪切载荷下温度和应变率对碳纤维增强聚醚醚酮复合材料强化行为的影响

doi: 10.13801/j.cnki.fhclxb.20201015.001
基金项目: 基础加强计划技术领域基金项目(2019-JCJQ-JJ-341);国家自然科学基金(51875283);中央高校基本科研业务费专项资金(NS2020035)
详细信息
    通讯作者:

    齐振超,博士,副教授,硕士生导师,研究方向为复合材料装配 E-mail:qizhenchao2007@foxmail.com

  • 中图分类号: TB332

Effects of temperature and strain rate on hardening behavior of carbon fiber reinforced polyether ether ketone composite under shear load

  • 摘要: 碳纤维增强聚醚醚酮(CF/PEEK)是一种高性能热塑性复合材料,在航空航天领域有着广阔的应用前景。由于PEEK具有温度和应变率相关的非线性行为,导致CF/PEEK复合材料在基体主导的面内剪切方向也有类似的力学行为。本文在不同的温度和应变率下对CF/PEEK复合材料试件进行了剪切实验,将应力-应变曲线分为线性与非线性部分,发现温度和应变率对CF/PEEK复合材料的屈服应力有着较大的影响。随着温度从20℃升高到130℃屈服应力下降了66%左右,下降速度先快后慢,随着应变率从10−5 s−1提高到0.1 s−1屈服应力均匀增大了35%左右。将所得规律拟合背应力经验公式,修改了经典的热塑性复合材料本构模型的屈服函数。并编写VUMAT用户子程序对CF/PEEK复合材料剪切实验进行数值分析,与实验结果对比发现非线性阶段的剪切应力-应变关系及屈服点的剪切应力吻合良好,但是由于纤维和PEEK基体的浸润性较差,导致CF/PEEK复合材料内部存在孔隙缺陷,影响了CF/PEEK复合材料的初始剪切弹性行为,导致加载初始阶段存在偏差。

     

  • 图  1  CF/PEEK复合材料循环剪切实验

    Figure  1.  Cyclic shear loading test of CF/PEEK composite

    图  2  CF/PEEK复合材料在不同应变率下的应力-应变曲线

    Figure  2.  Stress-strain curves of CF/PEEK composite at different strain rates

    图  3  不同温度下的CF/PEEK复合材料剪切试件

    Figure  3.  CF/PEEK composite shear specimen at different temperatures

    图  4  CF/PEEK复合材料在不同温度下的应力-应变曲线

    Figure  4.  Stress-strain curves of CF/PEEK composite at different temperatures

    图  5  CF/PEEK复合材料剪切区域滑移现象

    Figure  5.  Slip behavior in shear zone of CF/PEEK composite

    图  6  ABAQUS CF/PEEK复合材料剪切试件模型及自定义材料性能用户子程序VUMAT算法逻辑

    Figure  6.  Shear specimen model and VUMAT algorithm logic of CF/PEEK composite in ABAQUS

    图  7  CF/PEEK复合材料剪切数值分析结果与实验结果对比

    Figure  7.  Comparison of numerical results and experimental results of CF/PEEK composite under shear load

    表  1  碳纤维增强聚醚醚酮(CF/PEEK)复合材料力学性能

    Table  1.   Properties of carbon fiber reinforced polyether ether ketone (CF/PEEK) composite

    PropertyValue
    Longitudinal modulus E1/GPa 130.00
    Transverse moduli E2, E3/GPa 7.86
    Transverse shear modulus G23/GPa 3.63
    Axial shear moduli G12, G13/GPa 5.86
    Poisson’s ratio in 23 direction ν23 0.51
    Poisson’s ratios in 12 and 13 directions ν12, ν13 0.28
    下载: 导出CSV
  • [1] SOURAV C, JÜRGEN P, BEATE K. Influence of different carbon nanotubes on the electrical and mechanical properties of melt mixed poly (ether sulfone)-multi walled carbon nanotube composites[J]. Composites Science and Technology, 2012, 72(15): 2820-2828.
    [2] GENEVIEVE P, SHI H J, ARTHUR L. A study on amplitude transmission in ultrasonic welding of thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 113: 342-345.
    [3] IRENE FERNANDEZ V, PABLO V R. On avoiding thermal degradation during welding of high-performance thermoplastic composites to thermoset composites[J]. Compo-sites Part A: Applied Science and Manufacturing, 2015, 77: 175-180.
    [4] ZHANG Y B, SUN L Y. Effects of strain rate and high temperature environment on the mechanical performance of carbon fiber reinforced thermoplastic composites fabricated by hot press molding[J]. Composites Part A: Applied Science and Manufacturing,2020,134:105905.
    [5] LI Jianjun, LU Wenjun, CHEN Shaohua, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures[J]. International Journal of Plasticity,2020,126:26-28.
    [6] GE Chao, YU Qingbo, QU Zhuojun. On dynamic response and fracture-induced initiation characteristics of aluminum particle filled PTFE reactive material using hat-shaped specimens[J]. Materials & Design,2020,188:107472.
    [7] 杨王玥. 低碳钢多道次热变形中的应变强化相变与铁素体动态再结晶[J]. 金属学报, 2000(11):1192-1196. doi: 10.3321/j.issn:0412-1961.2000.11.017

    YANG Wangyue. Strain-enhanced phase transition and ferrite dynamic recrystallization in multi-step thermal deformation of low carbon steel[J]. Acta Metalica Sinica,2000(11):1192-1196(in Chinese). doi: 10.3321/j.issn:0412-1961.2000.11.017
    [8] JEONG H T. Strain hardening behavior and strengthening mechanism in Mg-rich Al-Mg binary alloys subjected to aging treatment[J]. Materials Science & Engineering A,2020,794:139862.
    [9] TOSHIJI M, HIDETOSHI S. Strengthening Mg-Al-Zn alloy by repetitive oblique shear strain with caliber roll[J]. Scripta Materialia,2009,62(2):113-116.
    [10] ESMAEELI E, MANNING E, BARROS J A. Strain hardening fibre reinforced cement composites for the flexural strengthening of masonry elements of ancient structures[J]. Construction and Building Materials,2013,38(C):1010-1021.
    [11] 欧华杰, 陈港, 朱朋辉. 纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能[J]. 复合材料学报, 2020, 37(11):2735-2742.

    OU Huajie, CHEN Gang, ZHU Penghui. Preparation and strain sensitive performance of cellulose nanofibercarbon nanotubes/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica,2020,37(11):2735-2742(in Chinese).
    [12] TOUCHARD F, LAFARIE-FRENOT M C, GUÉDRA-DEGEORGES D. Mechanical behaviour characteristics of a thermoplastic composite used in structural components[J]. Composites Science and Technology,1996,56(7):785-791. doi: 10.1016/0266-3538(96)00021-8
    [13] LAGATTU F, LAFARIE-FRENOT M C. Variation of PEEK matrix crystallinity in APC-2 composite subjected to large shearing deformations[J]. Composites Science and Technology,2000,60(4):605-612. doi: 10.1016/S0266-3538(99)00169-4
    [14] VIEILLE B, AUCHER J, TALEB L. Influence of temperature on the behavior of carbon fiber fabrics reinforced PPS laminates[J]. Materials Science and Engineering: A,2009,517(1-2):51-60. doi: 10.1016/j.msea.2009.03.038
    [15] BARBA D, ARIAS A, GARCIA-GONZALEZ D. Temperature and strain rate dependences on hardening and softening behaviours in semi-crystalline polymers: Application to PEEK[J]. International Journal of Solids and Structures, 2020, 182-183: 206-210.
    [16] SUN C T. A simple flow rule for characterizing nonlinear behavior of fiber composites[J]. Journal of Composite Materials, 1989, 23(10): 1009-1020.
    [17] WANG Shiyu, ZHANG Jiazhen, FANG Guodong. Mathematical description of mechanical behavior of woven fabric reinforced PPS-based composites at high temperature[J]. Polymer Composites,2019,40(3):1097-1102. doi: 10.1002/pc.24807
    [18] ASTM. Stand test method for shear properties of compo-site materials by the V-notched beam method: ASTM D5379/D5379M-05[S]. West conshohocken: ASTM, 2012.
    [19] WEEKS C A, SUN C T. Modeling non-linear rate-dependent behavior in fiber-reinforced composites[J]. Compo-sites Science and Technology,1998,58(3):603-611.
    [20] HASSAN E, GE D, YANG L, et al. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J]. Composites Part A: Applied Science and Manufacturing,2018,112:155-160. doi: 10.1016/j.compositesa.2018.05.029
    [21] YANG Zhengling. Strain rate dependent shear localization and deformation mechanisms in the CrMnFeCoNi high-entropy alloy with various microstructures[J]. Materials Science & Engineering A,2020,793:139854.
    [22] CHEN W H, HE W, CHEN Z, et al. Extraordinary room temperature tensile ductility of laminated Ti/Al composite: Roles of anisotropy and strain rate sensitivity[J]. International Journal of Plasticity,2020,133:102806.
    [23] PRAKASH G, SINGH N K , GUPTA N K. Deformation behaviours of Al2014-T6 at different strain rates and temperatures[J]. Structures,2020,26:193-203.
    [24] MA C, TAI N H, WU S H, et al. Creep behavior of carbon-fiber-reinforced polyetheretherketone (PEEK) [±45] 4 s laminated composites (I)[J]. Composites Part B: Engineering,1997,28(4):407-417.
    [25] ZOU Huiran, YIN Weilong, CAI Chaocan, et al. The out-of-plane compression behavior of cross-ply AS4/PEEK thermoplastic composite laminates at high strain rates[J]. Materials, 2018, 11(11): 2312.
    [26] ABBASNEZHAD N, KHAVANDI A, FITOUSSI J. Influence of loading conditions on the overall mechanical behavior of polyether-ether-ketone (PEEK)[J]. International Journal of Fatigue, 2018, 109: 83-92.
    [27] ALVAREDO Á, MARTÍN M, CASTELL P, et al. Non-isothermal crystallization behavior of PEEK/graphene nanoplatelets composites from melt and glass states[J]. Polymers,2019,11(1):124.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1333
  • HTML全文浏览量:  419
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 录用日期:  2020-09-29
  • 网络出版日期:  2020-10-15
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回