留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管增强开孔铝基复合泡沫的疲劳性能

林森 杨旭东 刘冠甫 胡琪 沙军威

林森, 杨旭东, 刘冠甫, 等. 碳纳米管增强开孔铝基复合泡沫的疲劳性能[J]. 复合材料学报, 2021, 38(8): 2666-2675. doi: 10.13801/j.cnki.fhclxb.20201110.003
引用本文: 林森, 杨旭东, 刘冠甫, 等. 碳纳米管增强开孔铝基复合泡沫的疲劳性能[J]. 复合材料学报, 2021, 38(8): 2666-2675. doi: 10.13801/j.cnki.fhclxb.20201110.003
LIN Sen, YANG Xudong, LIU Guanfu, et al. Fatigue performance of open-cell aluminium matrix composite foams reinforced by carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2666-2675. doi: 10.13801/j.cnki.fhclxb.20201110.003
Citation: LIN Sen, YANG Xudong, LIU Guanfu, et al. Fatigue performance of open-cell aluminium matrix composite foams reinforced by carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2666-2675. doi: 10.13801/j.cnki.fhclxb.20201110.003

碳纳米管增强开孔铝基复合泡沫的疲劳性能

doi: 10.13801/j.cnki.fhclxb.20201110.003
基金项目: 国家自然科学基金(51971242);大学生创新创业训练计划项目(201910059036)
详细信息
    通讯作者:

    杨旭东,博士,副教授,硕士生导师,研究方向为泡沫铝及铝基复合材料  E-mail:xdyangtj@163.com

  • 中图分类号: TB331;TB333

Fatigue performance of open-cell aluminium matrix composite foams reinforced by carbon nanotubes

  • 摘要: 采用原位化学气相沉积、短时球磨和填加造孔剂法相结合的工艺制备了碳纳米管(CNTs)/Al复合泡沫,研究了其在压缩-压缩循环载荷下的力学性能及失效机制。结果表明,CNTs/Al复合泡沫的应变-循环次数曲线经历线弹性、应变硬化及应变快速增长三个阶段。不同于泡沫铝的逐层坍塌变形失效模式,CNTs/Al复合泡沫疲劳失效的主要原因是大量剪切变形带的形成,试样出现快速的塑性变形。此外,CNTs含量为2.5wt%、孔隙率为60%的复合泡沫试样的疲劳强度相比于泡沫铝提高了92%。CNTs的均匀分布及增强相与基体材料之间良好的界面结合性保证了疲劳载荷能够以剪切力的形式从基体传递到CNTs上,使其充分发挥自身高强度、高韧性的特点,进而提高了疲劳性能。

     

  • 图  1  2.5wt%碳纳米管(CNTs)/Al复合泡沫的宏观形貌 (a) 和SEM图像((b), (c)) 及TEM图像 (d)

    Figure  1.  Macrostructure (a), SEM images ((b), (c)) and TEM image (d) of 2.5wt% carbon nanotubes (CNTs)/Al composite foams

    图  2  泡沫铝和2.5wt%CNTs/Al复合泡沫的准静态压缩应力-应变曲线 (a) 与吸能曲线 (b)

    Figure  2.  Quasi-static compression curves (a) and energy absorption curves (b) of 2.5wt% CNTs/Al composite foams and Al foams

    图  3  2.5wt%CNTs/Al复合泡沫的准静态压缩变形过程

    Figure  3.  Quasi-static compression deformation process of 2.5wt% CNTs/Al composite foams

    图  4  泡沫铝 (a) 与2.5wt%CNTs/Al复合泡沫 (b) 的应变-循环次数曲线

    Figure  4.  Strain-number of cycle(εN) curves of Al foams (a) and 2.5wt% CNTs/Al composite foams (b)

    k—Stress level

    图  5  泡沫铝与2.5wt%CNTs/Al复合泡沫试样的应力水平-疲劳寿命曲线

    Figure  5.  Stress level-fatigue life curves of Al foams and 2.5wt%CNTs/Al composite foams

    σmax—Maximum load corresponding to the sample after 10 cycles without failure; Nf—Fatigue life of composite foam

    图  6  应力水平k=0.8时2.5wt%CNTs/Al复合泡沫的压缩-压缩疲劳变形过程

    Figure  6.  Compression-compression fatigue deformation process of 2.5wt% CNTs/Al composite foams when stress level k=0.8

    图  7  应力水平k=0.8时泡沫铝 ((a)~(c)) 和2.5wt%CNTs/Al复合泡沫 ((d)~(f)) 疲劳断口的SEM图像

    Figure  7.  SEM images of the fatigue fracture of pure Al foams ((a)-(c)) and 2.5wt%CNTs/Al composite foams ((d)-(f)) when stress level k=0.8

    图  8  2.5wt%CNTs/Al复合泡沫疲劳断口韧窝的SEM图像

    Figure  8.  SEM images of dimples at the fatigue fracture of 2.5wt%CNTs/Al composite foams

    图  9  CNTs/Al复合泡沫的拉曼光谱

    Figure  9.  Raman spectra of the CNTs/Al composite foams

    表  1  泡沫铝和2.5wt%CNTs/Al复合泡沫的压缩性能

    Table  1.   Compression performance of Al foams and 2.5wt% CNTs/Al composite foams

    Componentσs/MPaσpl/MPaεd/%d/(MJ·m−3)
    Al foams 10.94±1.08 18.40±1.11 62.25±4.84 12.59
    Composite foams 24.03±0.91 19.36±1.33 67.33±5.34 16.51
    Notes: σs—First maximum stress on the stress-strain curve; σpl—Stress between 20% and 40% compressive strain; εd—Strain corresponding to the intersection of the tangent lines of the yield plateau stage and densification stage; d—Energy absorption at ε=60%.
    下载: 导出CSV
  • [1] BANHART J, SEELIGER H W. Aluminum foam sandwich panels: Manufacture, metallurgy and applications[J]. Advanced Engineering Materials,2008,10(9):793-802. doi: 10.1002/adem.200800091
    [2] 王应武, 夏宇, 王志平. 泡沫铝材料应用研究现状[J]. 材料导报, 2013, 27(15):132-134. doi: 10.3969/j.issn.1005-023X.2013.15.027

    WANG Y W, XIA Y, WANG Z P. Application and research status of foamed aluminum material[J]. Material Review,2013,27(15):132-134(in Chinese). doi: 10.3969/j.issn.1005-023X.2013.15.027
    [3] KHERADMAND A B, LALEGANI Z. Electromagnetic interference shielding effectiveness of Al/Si composite foams[J]. Journal of Materials Science: Materials in Electronics,2015,26:7530-7536. doi: 10.1007/s10854-015-3389-1
    [4] ZU G Y, SONG B N, ZHONG Z Y, et al. Static three-point bending behavior of aluminum foam sandwich[J]. Journal of Alloys and Compounds,2012,540:275-278. doi: 10.1016/j.jallcom.2012.06.079
    [5] YANG K M, YANG X D, HE C N, et al. Damping characteristics of Al matrix composite foams reinforced by in-situ grown carbon nanotubes[J]. Materials Letters,2017,209:68-70. doi: 10.1016/j.matlet.2017.07.126
    [6] GIBSON I J, ASHBY M F. Cellular solids: Structure and properties[M]. Cambridge: Cambridge University Press, 1998.
    [7] 刘菊芬, 刘荣佩, 史庆南, 等. 新型泡沫铝制备工艺研究[J]. 材料导报, 2002(8):65-67. doi: 10.3321/j.issn:1005-023X.2002.08.022

    LIU J F, LIU R P, SHI Q N, et al. Study of fabricating process for new type aluminum foam[J]. Material Review,2002(8):65-67(in Chinese). doi: 10.3321/j.issn:1005-023X.2002.08.022
    [8] 杨旭东, 毕智超, 陈亚军, 等. 泡沫铝基复合材料的研究进展[J]. 热加工工艺, 2015, 44(8):12-16.

    YANG X D, BI Z C, CHEN Y J, et al. Recent advances in aluminum matrix composite[J]. Hot Working Technology,2015,44(8):12-16(in Chinese).
    [9] GUDEN M, S. YÜKSEL. SiC-particulate aluminum compo-site foams produced from powder compacts: Foaming and compression behavior[J]. Journal of Materials Science,2006,41(13):4075-4084.
    [10] XIA X, CHEN X W, ZHANG Z, et al. Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres[J]. Materials & Design,2014,56:353-358.
    [11] LI W T, YANG X D, HE C N, et al. Compressive responses and strengthening mechanisms of aluminum composite foams reinforced by graphene nanosheets[J]. Carbon,2019,153:396-406. doi: 10.1016/j.carbon.2019.07.043
    [12] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1):1-15.

    ZHAO N Q, LIU X H, PU B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review[J]. Acta Metallurgica Sinica,2019,55(1):1-15(in Chinese).
    [13] YANG X D, HU Q, DU J, et al. Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method[J]. International Journal of Fatigue,2019,121:272-280. doi: 10.1016/j.ijfatigue.2018.11.008
    [14] 杨旭东, 李宗岷, 杨昆明, 等. 碳纳米管增强铝基复合泡沫的阻尼性能[J]. 复合材料学报, 2019, 36(2):418-424.

    YANG X D, LI Z M, YANG K M, et al. Damping properties of Al matrix composite foams reinforced by carbon nano-tubes[J]. Acta Materiae Compositae Sinica,2019,36(2):418-424(in Chinese).
    [15] YANG X D, LIU E Z, SHI C S, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds,2013,563:216-220. doi: 10.1016/j.jallcom.2013.02.066
    [16] YANG K M, YANG X D, LIU E Z, et al. Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams[J]. Materials Science and Engineering A,2017,690:294-302. doi: 10.1016/j.msea.2017.03.004
    [17] WANG N Z, MAIRE E, CHEN X, et al. Compressive perfor-mance and deformation mechanism of the dynamic gas injection aluminum foams[J]. Materials Characterization,2019,147:11-20. doi: 10.1016/j.matchar.2018.10.013
    [18] BANERJEE S, HEMRAJ-BENNY T, WON S S. Covalent surface chemistry of single-walled carbon nanotubes[J]. Advanced Materials,2005,17(1):17-29. doi: 10.1002/adma.200401340
    [19] ZHANG Z, DING J, XIA X C, et al. Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes[J]. Materials & Design,2015:88.
    [20] ALDOSHAN A, KHANNA S. Effect of relative density on the dynamic compressive behaviour of carbon nanotube reinforced aluminum foam[J]. Materials science and Engineering A,2017,689:17-24. doi: 10.1016/j.msea.2017.01.100
    [21] KATONA B, SZEBENVI G, ORBULOV I N. Fatigue properties of ceramic hollow sphere filled aluminium matrix syntactic foams[J]. Materials science and Engineering A,2017,679:350-357. doi: 10.1016/j.msea.2016.10.061
    [22] SZLANCSIK A, KATONA B, ORBULOV I N, et al. Fatigue properties of EP/A356 aluminium matrix syntactic foams with different densities[C]. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, 426(1): 012045.
    [23] YANG K M, YANG X D, LIU E Z, et al. High strain rate dynamic compressive properties and deformation behavior of Al matrix composite foams reinforced by in-situ grown carbon nanotubes[J]. Materials Science and Engineering A,2018,729:487-495. doi: 10.1016/j.msea.2017.09.011
    [24] 杨旭东, 杨昆明, 邹田春, 等. 球磨对碳纳米管增强泡沫铝基复合材料压缩与吸能性能的影响[J]. 复合材料学报, 2018, 35(6):1518-1524.

    YANG X D, YANG K M, ZOU T C, et al. Effect of ball milling on the compressive property and energy absorption capacity of the carbon nanotube reinforced aluminum compo-site foams[J]. Acta Materiae Compositae Sinica,2018,35(6):1518-1524(in Chinese).
    [25] WANG J W, YANG X D, ZHANG M, et al. A novel approach to obtain in-situ growth carbon nanotube reinforced aluminum foams with enhanced properties[J]. Materials Letters,2015,161:763-766. doi: 10.1016/j.matlet.2015.09.093
    [26] ISO. Mechanical testing of metals-ductility testing-Compression test of porous and cellular metals: ISO 13314: 2011[S]. Geneva: ISO, 2011.
    [27] YANG X D, ZOU T C, SHI C S, et al. Effect of carbon nano-tube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites[J]. Materials Science and Engineering A,2016,660:11-18. doi: 10.1016/j.msea.2016.02.062
    [28] PAUL A, RAMAMURTY U. Strain rate sensitivity of a closed-cell aluminum foam[J]. Materials Science and Engineering A,2000,281:1-7. doi: 10.1016/S0921-5093(99)00750-9
    [29] SHI X P, LIU S Y, NIE H L, et al. Study of cell irregularity effects on the compression of closed-cell foams[J]. International Journal of Mechanical Sciences,2017,135:215-225.
    [30] SEKI H, TANE M, OTSUKA M, et al. Effects of pore morphology on fatigue strength and fracture surface of lotus type porous copper[J]. Journal of Materials Research,2007,22(5):1331-1338. doi: 10.1557/jmr.2007.0164
    [31] LINUL E, SERBAN D A, MARSAVINA L, et al. Low-cycle fatigue behaviour of ductile closed-cell aluminum alloy foams[J]. Fatigue and Fracture of Engineering Materials and Structures,2017,40(4):597-604. doi: 10.1111/ffe.12535
    [32] KOLLURI M, MUKHERJEE M, GARCIA-MORENO F, et al. Fatigue of a laterally constrained closed cell aluminum foam[J]. Acta Materialia,2008,56(5):1114-1125. doi: 10.1016/j.actamat.2007.11.004
    [33] HARTE A M, FLECK N A, ASHBY M F. Fatigue failure of an open cell and a closed cell aluminum aluminum alloy foam[J]. Acta Materialia,1999,47(8):2511-2524. doi: 10.1016/S1359-6454(99)00097-X
    [34] HAKAMADA M, KUROMURA T, CHINO Y, et al. Monotonic and cyclic compressive properties of porous aluminum fabricated by spacer methode[J]. Materials Science and Engineering A,2007,459(1):286-293.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1188
  • HTML全文浏览量:  451
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 录用日期:  2020-11-02
  • 网络出版日期:  2020-11-10
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回