留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚苯并噁嗪基三维超疏水涂层的制备及抗磨损腐蚀性能

曹祥康 孙晓光 肖松 蔡光义 张欣欣 董泽华

曹祥康, 孙晓光, 肖松, 等. 聚苯并噁嗪基三维超疏水涂层的制备及抗磨损腐蚀性能[J]. 复合材料学报, 2022, 39(2): 617-627. doi: 10.13801/j.cnki.fhclxb.20210407.002
引用本文: 曹祥康, 孙晓光, 肖松, 等. 聚苯并噁嗪基三维超疏水涂层的制备及抗磨损腐蚀性能[J]. 复合材料学报, 2022, 39(2): 617-627. doi: 10.13801/j.cnki.fhclxb.20210407.002
CAO Xiangkang, SUN Xiaoguang, XIAO Song, et al. Preparation and anti-wearing and anti-corrosion properties of 3D superhydrophobic coating based on poly-benzoxazine[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 617-627. doi: 10.13801/j.cnki.fhclxb.20210407.002
Citation: CAO Xiangkang, SUN Xiaoguang, XIAO Song, et al. Preparation and anti-wearing and anti-corrosion properties of 3D superhydrophobic coating based on poly-benzoxazine[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 617-627. doi: 10.13801/j.cnki.fhclxb.20210407.002

聚苯并噁嗪基三维超疏水涂层的制备及抗磨损腐蚀性能

doi: 10.13801/j.cnki.fhclxb.20210407.002
基金项目: 国家自然科学基金 (51771079);SF/JG-吕字-2020-50
详细信息
    通讯作者:

    董泽华,博士,教授,博士生导师,研究方向为材料腐蚀与防护  E-mail:zhdong@hust.edu.cn

  • 中图分类号: TG174.4

Preparation and anti-wearing and anti-corrosion properties of 3D superhydrophobic coating based on poly-benzoxazine

  • 摘要: 以聚苯并噁嗪(PBA)树脂为基底,通过调控Al2O3-ZrO2微纳米填料添加量及其配比,并喷涂在碳钢表面形成了一种三维超疏水涂层。分别采用接触角测量仪、扫描电镜、摩擦磨损实验、三维超景深显微镜,研究了Al2O3-ZrO2/PBA涂层表面水滴接触角与微观表面形貌的构效关系,考察了不同Al2O3-ZrO2微纳米填料添加量对涂层摩擦系数的影响。根据不同载荷下超疏水涂层质量损失与摩擦距离间的关系,建立了一个预测涂层超疏水保持寿命的数学模型。采用不同温度、不同UV光照时间来模拟环境对超疏水涂层的破坏作用,发现当Al2O3∶ZrO2∶PBA三者质量配比为1∶1∶2时,涂层初始水接触角可达154º,即使经过5.66 kPa载荷下总走长180 cm的擦伤,涂层仍表现出超疏水性(150°)。经过300℃下1 h高温烘烤后仍表现出超疏水性。虽然UV光照30 min后涂层失去超疏水性,但表面磨损后随即快速恢复超疏水性。此外,还考察了该复合超疏水涂层的抗蚀能力,电化学测试表明该超疏水涂层具有较高的电化学阻抗,对碳钢基体有良好的保护作用。

     

  • 图  1  质量比Al2O3∶ZrO2质量比为1∶1条件下不同填料添加量对Al2O3-ZrO2/PBA复合涂层的接触角

    Figure  1.  Contact angles of Al2O3-ZrO2/PBA composite coatings with different filler contents at mass ratio Al2O3∶ZrO2=1∶1

    图  2  填料含量为50%、不同Al2O3/ZrO2质量比时Al2O3-ZrO2/PBA复合涂层的微观形貌、元素分布和接触角变化

    Figure  2.  Micromorphologies, element distributions and contact angle of Al2O3-ZrO2/PBA composite coatings with different mass ratios of Al2O3/ZrO2 at 50% filler content

    图  3  Al2O3∶ZrO2质量比为1∶1时不同填料添加量对Al2O3-ZrO2/PBA复合涂层摩擦系数的影响

    Figure  3.  Friction coefficients of Al2O3-ZrO2/PBA composite coatings with different filler contents at mass ratio Al2O3∶ZrO2=1∶1

    图  4  1Al2O3-1ZrO2/50PBA涂层接触角随摩擦距离的变化及在180 cm摩擦走长后水滴在涂层表面的附着力测试过程

    Figure  4.  Contact angle evolution of 1Al2O3-1ZrO2/50PBA coating versus friction distance and the process of water droplet adhesive force test after suffering 180 cm friction distance

    图  5  1Al2O3-1ZrO2/50PBA涂层质量损失在不同载荷下随摩擦距离的变化及线性拟合结果

    Figure  5.  Mass loss rate change of 1Al2O3-1ZrO2/50PBA coating versus friction distance and linear fitting results

    F2.83 kPa, F5.66 kPa, F11.32 kPa—Mass loss of 1Al2O3-1ZrO2/50PBA after friction under 2.83 kPa, 5.66 kPa, 11.32 kPa pressure, respectively

    图  6  1Al2O3-1ZrO2/50PBA涂层初始和在不同载荷下摩擦180 cm后的表面三维形貌

    Figure  6.  3D morphologies of original 1Al2O3-1ZrO2/50PBA coating and suffering 180 cm long friction under different loads

    图  7  1Al2O3-1ZrO2/50PBA涂层表面接触角随温度的变化

    Figure  7.  Contact angle change of 1Al2O3-1ZrO2/50PBA coating versus temperature

    图  8  1Al2O3-1ZrO2/50PBA涂层表面接触角随液滴pH值的变化

    Figure  8.  Contact angle change of 1Al2O3-1ZrO2/50PBA coating versus pH value of droplet

    图  9  1Al2O3-1ZrO2/50PBA涂层表面接触角随UV辐照时间的变化及自修复展示

    Figure  9.  Contact angle change of 1Al2O3-1ZrO2/50PBA coating versus UV irradiation time and friction healing

    图  10  裸钢和1Al2O3-1ZrO2/50PBA涂层电极在3.5wt% NaCl 溶液中的极化曲线和电化学阻抗(不同盐雾时间)

    Figure  10.  Polarization curves of bare and 1Al2O3-1ZrO2/50PBA coated steel electrodes and EIS of coated electrode (enduring salt praying test) in 3.5wt% NaCl solution after salt spray tests

    Ecorr—Corrosion potential; Icorr—Corrosion current

    图  11  盐雾试验前后1Al2O3-1ZrO2/50PBA超疏水涂层的附着力

    Figure  11.  Bonding strength of 1Al2O3-1ZrO2/50PBA coating on mild steel before and after salt spray test

    表  1  不同填料添加量及配比的Al2O3- ZrO2/聚苯并噁嗪(PBA)复合涂层配方及简称

    Table  1.   Al2O3- ZrO2/poly-benzoxazine (PBA) composite coatings with different filler contents and filler mass ratios and corresponding abbreviations of coatings

    AbbreviationBA/gAl2O3/gZrO2/gFiller content/%Coating thickness/μm
    PBA 1 0 0 0 280±10
    1Al2O3-1ZrO2/15PBA 1 0.09 0.09 15 280±10
    1Al2O3-1ZrO2/30PBA 1 0.3 0.3 30 280±10
    1Al2O3-1ZrO2/50PBA 1 0.5 0.5 50 280±10
    1Al2O3-1ZrO2/55PBA 1 0.6 0.6 55 280±10
    1Al2O3-2ZrO2/50PBA 1 0.33 0.67 50 280±10
    2Al2O3-1ZrO2/50PBA 1 0.67 0.33 50 280±10
    Note: BA—Bisphenol A benzoxazine.
    下载: 导出CSV

    表  2  Al2O3∶ZrO2质量比为1∶1时不同填料添加量Al2O3-ZrO2/PBA复合涂层表面的高度差

    Table  2.   Height differences of Al2O3-ZrO2/PBA composite coatings with different filler contents at mass ratio Al2O3∶ZrO2=1∶1

    PBA1Al2O3-
    1ZrO2/
    15PBA
    1Al2O3-
    1ZrO2/
    30PBA
    1Al2O3-
    1ZrO2/
    50PBA
    Height difference
    of coating
    surface/μm
    1.08±0.33.71±1.131.68±1.269.61±0.8
    Note: Height difference—Value between the highest and the lowest points of coating surface.
    下载: 导出CSV

    表  3  1Al2O3-1ZrO2/50PBA涂层厚度在不同摩擦走长后的涂层剩余厚度

    Table  3.   Thickness of 1Al2O3-1ZrO2/50PBA coating after suffering different friction distance

    Friction distance/cm060120180
    Coating thickness/μm280±10202±10126±1032±10
    下载: 导出CSV
  • [1] LI H, YU S, HAN X. Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties[J]. Chemical Engineering Journal,2016,283:1443-1454. doi: 10.1016/j.cej.2015.08.112
    [2] 武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(11):2769-2775.

    WU Zhuangzhuang, MA Guojia, CUI Xiangzhong, et al. Wettability and anti-icing performance of micro-nano structure superhydrophobic surface[J]. Acta Materiae Compositae Sinica,2020,37(11):2769-2775(in Chinese).
    [3] 魏倩, 林韶晖, 冯献社, 等. 超疏水石墨烯/甲醛-三聚氰胺-亚硫酸氢钠共聚物海绵的制备及其在油水分离中的应用[J]. 复合材料学报, 2019, 36(7):1728-1736.

    WEI Qian, LIN Shaohui, FENG Xianshe, et al. Synthesis of superhydrophobic graphene/formaldehyde-melamine-sodium bisulfite copolymer sponge and its application as absorbent for oil water separation[J]. Acta Materiae Compositae Sinica,2019,36(7):1728-1736(in Chinese).
    [4] YAO W, LIANG W, HUANG G, et al. Superhydrophobic coatings for corrosion protection of magnesium alloys[J]. Journal of Materials Science & Technology,2020,52:100-118.
    [5] KOBINA SAM E, KOBINA SAM D, LV X, et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal,2019,373:531-546. doi: 10.1016/j.cej.2019.05.077
    [6] JIANG D, XIA X, HOU J, et al. Enhanced corrosion barrier of microarc-oxidized mg alloy by self-healing superhydrophobic silica coating[J]. Industrial & Engineering Chemistry Research,2018,58(1):165-178.
    [7] JIANG D, ZHOU H, WAN S, et al. Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly[J]. Surface and Coatings Technology,2018,339:155-166. doi: 10.1016/j.surfcoat.2018.02.001
    [8] BARATI DARBAND G, ALIOFKHAZRAEI M, KHORSAND S, et al. Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, Chemical and Mechanical Stability[J]. Arabian Journal of Chemistry,2020,13(1):1763-1802. doi: 10.1016/j.arabjc.2018.01.013
    [9] LU Yao, SATHASIVAM Sanjayan, SONG Jinlong, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science,2015,347(6226):1132-1135. doi: 10.1126/science.aaa0946
    [10] WU B, LYU J, PENG C, et al. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness[J]. Chemical Engineering Journal,2020,387:124066. doi: 10.1016/j.cej.2020.124066
    [11] WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature,2020,582(7810):55-59. doi: 10.1038/s41586-020-2331-8
    [12] LI C, LAI H, CHENG Z, et al. Coating “nano-armor” for robust superwetting micro/nanostructure[J]. Chemical Engineering Journal,2020,385:123924. doi: 10.1016/j.cej.2019.123924
    [13] QIAN H, XU D, DU C, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J]. Journal of Materials Chemistry A,2017,5(5):2355-2364. doi: 10.1039/C6TA10903A
    [14] WANG Y, LIU Y, LI J, et al. Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration[J]. Chemical Engineering Journal,2020,390:124311. doi: 10.1016/j.cej.2020.124311
    [15] JIANG D, XIA X, HOU J, et al. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy[J]. Chemical Engineering Journal,2019,373:285-297. doi: 10.1016/j.cej.2019.05.046
    [16] QING Y, SHI S, LV C, et al. Microskeleton-nanofiller composite with mechanical super-robust superhydrophobicity against abrasion and impact[J]. Advanced Functional Materials,2020,30(39):1910665. doi: 10.1002/adfm.201910665
    [17] ZHANG X, ZHI D, SUN L, et al. Super-durable, non-fluorinated superhydrophobic free-standing items[J]. Journal of Materials Chemistry A,2018,6(2):357-362. doi: 10.1039/C7TA08895G
    [18] LIU M, LUO Y, JIA D. Facile, solvent-free fabrication of a robust 3-dimensional continuous superhydrophobic coating with wettability control and abrasion healing[J]. Chemical Engineering Journal,2019,368:18-28. doi: 10.1016/j.cej.2019.02.162
    [19] LIU M, LUO Y, JIA D. Fabrication of a versatile composite material with three-dimensional superhydrophobic for aquatic show[J]. Chemical Engineering Journal,2020,398:125362. doi: 10.1016/j.cej.2020.125362
    [20] YIN X, YU S, WANG K, et al. Fluorine-free preparation of self-healing and anti-fouling superhydrophobic Ni3S2 coating on 304 stainless steel[J]. Chemical Engineering Journal,2020,394:124925. doi: 10.1016/j.cej.2020.124925
    [21] 周长路, 辛忠. 聚苯并噁嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1):112-123. doi: 10.7536/PC171008

    ZHOU Changlu, XIN Zhong. Fabrication, properties and applications of functional surface based on polybenzoxazine[J]. Progress in Chemistry,2018,30(1):112-123(in Chinese). doi: 10.7536/PC171008
    [22] LI X, ZHAO S, HU W, et al. Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2[J]. Applied Surface Science,2019,481:374-378. doi: 10.1016/j.apsusc.2019.03.114
    [23] LI M, LI Y, XUE F, et al. A robust and versatile superhydrophobic coating: Wear-resistance study upon sandpaper abrasion[J]. Applied Surface Science,2019,480:738-748. doi: 10.1016/j.apsusc.2019.03.001
    [24] LAFUMA A, QUERE D. Superhydrophobic states[J]. Nature Material,2003,2(7):457-460. doi: 10.1038/nmat924
    [25] 杨浩, 卞达, 郭永信, 等. Al2O3改性聚四氟乙烯复合涂层的摩擦磨损特性[J]. 材料保护, 2020, 53(10):43-46.

    YANG Hao, BIAN Da, GUO Yongxin, et al. Friction and wear characteristics of Al2O3 modified polytetrafluoroethylene composite coatings[J]. Materials Protection,2020,53(10):43-46(in Chinese).
    [26] ZHOU S, LI W, ZHAO W, et al. Tribological behaviors of polyimide composite films enhanced with fluorographene[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2019,580:123707. doi: 10.1016/j.colsurfa.2019.123707
    [27] WANG F, PI J, SONG F, et al. A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness[J]. Chemical Engineering Journal,2020,381:122539. doi: 10.1016/j.cej.2019.122539
    [28] HU W, HUANG J, ZHANG X, et al. A mechanically robust and reversibly wettable benzoxazine/epoxy/mesoporous TiO2 coating for oil/water separation[J]. Applied Surface Science,2020,507:145168. doi: 10.1016/j.apsusc.2019.145168
    [29] MACKO J A, ISHIDA H. Structural effects of phenols on the photooxidative degradation of polybenzoxazines[J]. Polymer,2001,42:227-240. doi: 10.1016/S0032-3861(00)00323-2
    [30] CAO X, HUANG F, HUANG C, et al. Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection[J]. Corrosion Science,2019,159:108120. doi: 10.1016/j.corsci.2019.108120
    [31] ZANG D, ZHU R, ZHANG W, et al. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials,2017,27(8):1605446. doi: 10.1002/adfm.201605446
    [32] ELZAABALAWY A, MEGUID S A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites[J]. Chemical Engineering Journal,2020,398:125403. doi: 10.1016/j.cej.2020.125403
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  948
  • HTML全文浏览量:  392
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-03-31
  • 录用日期:  2021-03-31
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回