留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏高岭土对水泥砂浆中钢筋钝化的影响

李闯 范颖芳 李秋超

李闯, 范颖芳, 李秋超. 偏高岭土对水泥砂浆中钢筋钝化的影响[J]. 复合材料学报, 2020, 37(11): 1-11
引用本文: 李闯, 范颖芳, 李秋超. 偏高岭土对水泥砂浆中钢筋钝化的影响[J]. 复合材料学报, 2020, 37(11): 1-11
Chuang LI, Yingfang FAN, Qiuchao LI. Influence of metakaolin on passivation of reinforcing steel in cement mortar[J]. Acta Materiae Compositae Sinica.
Citation: Chuang LI, Yingfang FAN, Qiuchao LI. Influence of metakaolin on passivation of reinforcing steel in cement mortar[J]. Acta Materiae Compositae Sinica.

偏高岭土对水泥砂浆中钢筋钝化的影响

基金项目: 国家自然科学基金面上项目(51578099),大连海事大学基础性学科经费
详细信息
    通讯作者:

    范颖芳,博士,教授,研究方向为混凝土结构耐久性 E-mail:fanyf@dlmu.edu.cn

  • 中图分类号: TU528.33

Influence of metakaolin on passivation of reinforcing steel in cement mortar

  • 摘要: 利用电化学阻抗谱、循环动电位极化、阴极极化、热重和X射线衍射等方法,研究了偏高岭土(MK)掺量(占MK/水泥总质量的20wt%、30wt%、40wt%)对钢筋-MK/水泥砂浆中钢筋钝化膜形成及其耐蚀性能的影响。结果表明:在一般环境中,钢筋在不同MK掺量的钢筋-MK/水泥砂浆中均可以形成稳定的钝化膜;在质量分数为3.5wt%的NaCl溶液环境中,MK掺量过多会使钢筋-MK/水泥砂浆中钢筋的钝化膜稳定性降低,耐蚀性能下降。从钢筋钝化膜稳定角度考虑,在氯盐环境中,水泥基材料中MK掺量应予以限制。
  • 图  1  偏高岭土(MK)的XRD图谱

    Figure  1.  XRD spectra of metakaolin(MK)

    图  2  MK粒径分布

    Figure  2.  Particle size distribution of MK

    图  3  钢筋-MK/水泥砂浆几何尺寸(单位:mm)

    Figure  3.  Geometry of reinforcing steel-MK/cement mortar (Unit: mm)

    图  4  28 d内钢筋-MK/水泥砂浆腐蚀电位

    Figure  4.  Corrosion potential of reinforcing steel-MK/cement mortars in 28 d

    图  5  3.5wt% NaCl溶液浸泡前后钢筋-MK/水泥砂浆腐蚀电位

    Figure  5.  Corrosion potential of reinforcing steel-MK/cement mortars before and after immersion in 3.5wt% NaCl solution

    图  6  1 d和28 d 钢筋-MK水泥砂浆的电化学阻抗谱

    Figure  6.  EIS plots of reinforcing steel-MK/cement mortars for 1 d and 28 d

    图  7  经浸泡3.5wt%NaCl溶液后钢筋-MK/水泥砂浆的电化学阻抗谱

    Figure  7.  EIS plots of reinforcing steel-MK/cement mortars after immersion in 3.5wt% NaCl solution

    图  8  钢筋-MK/水泥砂浆的电化学阻抗谱等效电路

    Figure  8.  Equivalent circuit of EIS for reinforcing steel-MK/cement mortar

    图  9  钢筋-MK/水泥砂浆在3.5wt%NaCl溶液中的阴极极化曲线

    Figure  9.  Cathodic curves for reinforcing steel-MK/cement mortars in 3.5wt% NaCl solution

    图  10  循环动电位极化曲线示意图

    Figure  10.  Schematic diagram of cyclic potentio dynamic polarization curve

    图  11  钢筋-MK/水泥砂浆的循环动电位极化曲线

    Figure  11.  Cyclic potentiodynamic polarization curves of reinforcing steel-MK/cement mortars

    图  12  MK/水泥净浆的XRD衍射图谱(28 d)

    Figure  12.  XRD patterns for MK/cement pastes (28 d)

    图  13  MK/水泥净浆热重曲线(28 d)

    Figure  13.  Therogravimetrie curves for MK/cement pastes (28 d)

    图  14  经酚酞溶液浸润后MK/水泥净浆颜色变化(28 d)

    Figure  14.  Color variation of MK/cement pastes after soaking with phenolphthalein solution (28 d)

    表  1  水泥化学组成

    Table  1.   Chemical composition of cement

    wt%
    SiO2Al2O3Fe2O3CaOMgOSO3Na2Oeqf-CaOCl-Ignition loss
    21.884.313.4762.391.722.560.231.520.0161.42
    Notes: Na2Oeq—Content of volatile alkaline; f-CaO—Free calcium oxide[9].
    下载: 导出CSV

    表  2  水泥物理力学性能

    Table  2.   Physical and mechanical properties of cement

    Density/(g.cm-2)Standard consistency/%Compressive strength of 3 d/MPaFlexural strength of 3 d/MPaSetting time/min
    Initial settingFinal setting
    3.152526.65.3186248
    下载: 导出CSV

    表  3  MK化学组成

    Table  3.   Chemical composition of MK

    wt%
    SiO2Al2O3Fe2O3CaOMgOSO3K2ON2OIgnition loss
    49.4043.880.510.272.660.140.231.520.59
    下载: 导出CSV

    表  4  MK/水泥砂浆、MK/水泥净浆配合比

    Table  4.   Mix proportions of MK/cement mortar and MK/cement paste

    SampleMK/wt%Cement/wt%Water/Binder ratioBinder/Sand ratioWater reducer/wt%
    M001000.41/30
    M2020800.41/30.13
    M3030700.41/30.26
    M4040600.41/30.36
    P001000.400
    P2020800.400.13
    P3030700.400.26
    P4040600.400.36
    下载: 导出CSV

    表  5  钢筋-MK/水泥砂浆的电化学测试过程

    Table  5.   Electrochemical test process of reinforcing steel-MK/cement mortar

    StageTime/dEnvironmentElectrochemical test
    11-28General environmentEcorr, EIS, CPP
    2323.5wt% NaCl solutionEcorr, EIS, CPP, CP
    Notes: Ecorr—Corrosion potential; EIS—Electrochemical impedance spectroscopy; CPP—Cyclic potentiodynamic polarization; CP—Cathodic polarization.
    下载: 导出CSV

    表  6  钢筋-MK/水泥砂浆的等效电路元件参数

    Table  6.   Parameters of equivalent circuit for reinforcing steel-MK/cement mortars

    SampleRct/(kΩ·cm2)Y0/(105Ω−1·cm−2·sn)nCapp/(μF·cm−2)
    1 d28 d3.5wt%NaCl1 d28 d3.5wt%NaCl1 d28 d3.5wt%NaCl1 d28 d3.5wt%NaCl
    M02012.06462.26452.23.402.432.460.900.930.9054.835.942.7
    M201012.57632.76462.03.532.272.350.920.890.9048.141.840.7
    M30423.43972.52844.73.002.422.280.910.930.9240.634.932.9
    M40407.34633.4650.83.682.364.130.910.900.7548.340.6126.6
    Notes: Rct—Charge transfer resistance on surface of reinforcing steel; Y0—Base admittance; n—Index of constant phase angle; Capp—Apparent interfacial capacitance.
    下载: 导出CSV

    表  7  钢筋-MK/水泥砂浆的循环动电位极化曲线电化学参数

    Table  7.   Electrochemical parameters of cyclic potentio dynamic polarization curves of reinforcing steel-MK/cement mortars

    SampleEpit/mVErep/mVip/(μA·cm−2)
    28 d3.5wt%NaCl28 d3.5wt%NaCl28 d3.5wt%NaCl
    M06626826747160.0730.078
    M207056807407280.0750.077
    M306806957267440.0760.075
    M40690717733−660.0800.222
    Notes: Epit—Pitting potential; Erep—Repassivation potential; ip—Current density of passivation.
    下载: 导出CSV

    表  8  28 d时MK/水泥净浆化学结合水含量(质量分数/wt%)

    Table  8.   Chemical bound water contents for MK/ cement pastes for 28 d (mass fraction/wt%)

    SampleC-S-HCa(OH)2CaCO3
    P07.274.361.75
    P2011.681.65
    P3012.000.95
    P4012.12
    Note: C-S-H is calcium silicate hydrate.
    下载: 导出CSV
  • [1] STEFANONI M, ANGST U, ELSENER B. Corrosion rate of carbon steel in carbonated concrete-A critical review[J]. Cement and Concrete Research,2018,103:35-48. doi:  10.1016/j.cemconres.2017.10.007
    [2] 柳俊哲, 沈建生, 闫加利等. 碳化与氯盐腐蚀作用下钢筋锈蚀物的微结构特征[J]. 复合材料学报, 2018, 35(9):2587-2592.

    LIU J, SHEN J, YAN J, et al. Microstructural characteristics of steel corrosion products under carbonation and chloride salt[J]. Acta Materiae Compositae Sinica,2018,35(9):2587-2592(in Chinese).
    [3] POON C S, LAM L, KOU S C, et al. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes[J]. Cement & Concrete Research,2001,31(9):1301-1306.
    [4] COURARD L, DARIMONT A, SCHOUTERDEN M, et al. Durability of mortars modified with metakaolin[J]. Cement and Concrete Research,2003,33(9):1473-1479. doi:  10.1016/S0008-8846(03)00090-5
    [5] 乔春雨, 倪文, 王长龙. 较大偏高岭土掺量下偏高岭土-水泥硬化浆体性能与微观结构[J]. 建筑材料学报, 2015, 18(3)-393. doi:  10.3969/j.issn.1007-9629.2015.03.028

    QIAO C, NI W, WANG C. Properties and Microstructure of Metakaolin(MK)-Cement Hardened Slurry with High Use Level of MK[J]. Journal of Building Materials,2015,18(3)-393(in Chinese). doi:  10.3969/j.issn.1007-9629.2015.03.028
    [6] MO L, LV L, DENG M, et al. Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste[J]. Cement and Concrete Research,2018,111:116-129. doi:  10.1016/j.cemconres.2018.06.003
    [7] 李福海, 张桂斌, 周鸿屹等. 高活性偏高岭土及粉煤灰对碱骨料反应的抑制作用[J]. 建筑材料学报, 2017, 20(6)-876. doi:  10.3969/j.issn.1007-9629.2017.06.009

    LI F, ZHANG G, ZHOU H, et al. Inhibiton effect of super metakaolin and fly ash on alkali-silica reaction in concrete[J]. Journal of Building Materials,2017,20(6)-876(in Chinese). doi:  10.3969/j.issn.1007-9629.2017.06.009
    [8] KHATIB J M, WILD S. Sulphate Resistance of Metakaolin Mortar[J]. Cement and Concrete Research,1998,28(1):83-92. doi:  10.1016/S0008-8846(97)00210-X
    [9] 中华人民共和国国家质量监督检验检疫总局. 通用硅酸盐水泥: GB175—2007[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Common Portland cement: GB175—2007[S]. Beijing: Standards press of china, 2007(in Chinese).
    [10] 国家质量技术监督局. 水泥胶砂强度检验方法(ISO法): GB/T 17617—1999[S]. 北京: 中国标准出版社, 1999.

    State Bureau of Quality and Technical Supervision. Method of testing cements-determination of strength: GB/T 17617-1999[S]. Beijing: Standards press of china, 1999(in Chinese).
    [11] BABAEE M, CASTEL A. Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete[J]. Cement and Concrete Research,2016,88:96-107. doi:  10.1016/j.cemconres.2016.05.012
    [12] SONG G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete[J]. Cement and Concrete Research,2000,30(11):1723-1730. doi:  10.1016/S0008-8846(00)00400-2
    [13] TANG F, CHEN G, VOLZ J S, et al. Cement-modified enamel coating for enhanced corrosion resistance of steel reinforcing bars[J]. Cement and Concrete Composites,2013,35(1):171-180. doi:  10.1016/j.cemconcomp.2012.08.009
    [14] ZHENG H, DAI J G, POON C S, et al. Influence of calcium ion in concrete pore solution on the passivation of galvanized steel bars[J]. Cement and Concrete Research,2018,108:46-58. doi:  10.1016/j.cemconres.2018.03.001
    [15] 姬永生, 王志龙, 徐从宇等. 混凝土中钢筋腐蚀过程的极化曲线分析[J]. 浙江大学学报(工学版), 2012(08):118-125.

    JI Y, WANG Z, XU C, et al. Study on polarization curve diagrams of steel corrosion in concrete[J]. Journal of Zhejiang University (Engineering Science),2012(08):118-125(in Chinese).
    [16] MONTICELLI C, NATALI M E, BALBO A, et al. A study on the corrosion of reinforcing bars in alkali-activated fly ash mortars under wet and dry exposures to chloride solutions[J]. Cement and Concrete Research,2016,87:53-63. doi:  10.1016/j.cemconres.2016.05.010
    [17] 施锦杰, 孙伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4)-452. doi:  10.3969/j.issn.1007-9629.2011.04.028

    SHI J, SUN W, GENG G. Influence of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials,2011,14(4)-452(in Chinese). doi:  10.3969/j.issn.1007-9629.2011.04.028
    [18] American Society of Testing Methods. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete ASTM 876–09[S]. United States: ASTM International, 2009.
    [19] SERDAR, POYET M, L'HOSTIS S, et al. Carbonation of low-alkalinity mortars: Influence on corrosion of steel and on mortar microstructure[J]. Cement and concrete research: including Advanced cement based materials,2017.
    [20] PECH-CANUL M A, CASTRO P. Corrosion measurement of steel reinforcement in concrete exposed to a tropical marine atmosphere[J]. Cement and Concrete Research,2002,32(3):491-498. doi:  10.1016/S0008-8846(01)00713-X
    [21] PALANISWAMY N, VEDALAKSHMI R. Analysis of the electrochemical phenomenon at the rebar–concrete interface using the electrochemical impedance spectroscopic technique[J]. Magazine of Concrete Research,2010,62(3):177-189. doi:  10.1680/macr.2010.62.3.177
    [22] SERDAR, POYET M, L'HOSTIS S, et al. Carbonation of low-alkalinity mortars: Influence on corrosion of steel and on mortar microstructure[J]. Cement and concrete research: including Advanced cement based materials,2017.
    [23] LIU E, GHANDEHARI M, BRUCKNER, CHRISTIAN, et al. Mapping high pH levels in hydrated calcium silicates[J]. Cement and Concrete Research,2017,95:232-239. doi:  10.1016/j.cemconres.2017.02.001
  • [1] 李燕, 孙宝, 王爱国, 高晗.  TiO2-g-C3N4复合材料的制备及其在水泥石表面的应用, 复合材料学报. 2020, 37(8): 1981-1988. doi: 10.13801/j.cnki.fhclxb.20191129.002
    [2] 王新玲, 杨广华, 钱文文, 李可, 朱俊涛.  高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系, 复合材料学报. 2020, 37(12): 1-9.
    [3] 王腾蛟, 许金余, 朱从进, 任韦波.  灰粉比对苯丙乳液基水泥复合材料静态力学性能及破坏形态的影响, 复合材料学报. 2020, 37(9): 2324-2335. doi: 10.13801/j.cnki.fhclxb.20200212.002
    [4] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
    [5] 王春红, 左祺, 支中祥, 徐磊, SARANIZakaria, SHERAZHussain Siddique Yousfani.  聚乙烯醇乳液改性对汉麻秸秆纤维增强水泥基复合材料性能影响, 复合材料学报. 2020, 37(): 1-8.
    [6] 张聪, 余志辉, 韩世诚, 华渊.  混杂纤维增强应变硬化水泥基复合材料的压缩本构关系, 复合材料学报. 2020, 37(5): 1221-1226. doi: 10.13801/j.cnki.fhclxb.20190823.002
    [7] 张聪, 夏超凡, 袁振, 李志华.  混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系, 复合材料学报. 2020, 37(7): 1754-1762. doi: 10.13801/j.cnki.fhclxb.20191114.001
    [8] 王新玲, 陈永杰, 钱文文, 李可, 朱俊涛.  高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验, 复合材料学报. 2020, 37(): 1-10.
    [9] 崔一纬, 魏亚.  水泥基复合材料热电效应综述:机制、材料、影响因素及应用, 复合材料学报. 2020, 37(9): 2077-2093. doi: 10.13801/j.cnki.fhclxb.20200423.002
    [10] 朱俊涛, 赵亚楼, 李燚, 王新玲.  高强不锈钢绞线网与工程水泥基复合材料黏结锚固性能试验, 复合材料学报. 2020, 37(7): 1731-1742. doi: 10.13801/j.cnki.fhclxb.20191010.001
    [11] 赵秋红, 董硕, 朱涵.  钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型, 复合材料学报. 2020, 37(): 1-11.
    [12] 王作虎, 杨菊, 崔宇强, 申书洋.  碳纤维增强树脂复合材料加固钢筋混凝土柱抗震性能的尺寸效应试验, 复合材料学报. 2020, 37(10): 1-11. doi: 10.13801/j.cnki.fhclxb.20200212.001
    [13] 张霓, 郑晨阳, 羡丽娜, 王连广.  玻璃纤维增强树脂复合材料管-钢筋/混凝土空心构件抗弯性能, 复合材料学报. 2020, 37(12): 1-12.
    [14] 李趁趁, 于爱民, 高丹盈, 张普.  侵蚀环境下FRP条带加固锈蚀钢筋混凝土圆柱轴心受压试验, 复合材料学报. 2020, 37(8): 2015-2028. doi: 10.13801/j.cnki.fhclxb.20200212.005
    [15] 蔡厚雪, 袁安, 冯茹茜, 邓颜, 汤昊, 谭龙, 孙润光.  高性能LiNi0.8Co0.1Mn0.1O2正极材料的合成及其电化学性能, 复合材料学报. 2020, 37(): 1-8.
    [16] 巩桂芬, 曹景飞, 邹明贵.  共纺聚乙烯-乙烯醇锂-热塑性聚氨酯锂离子电池隔膜热力学及电化学性能, 复合材料学报. 2020, 37(5): 1063-1069. doi: 10.13801/j.cnki.fhclxb.20190924.001
    [17] 魏成成, 孙晓刚, 梁国东, 黄雅盼, 胡浩, 徐宇浩.  Si@环化聚丙烯腈/多壁碳纳米管负极复合材料的制备及电化学性能, 复合材料学报. 2020, 37(6): 1450-1457. doi: 10.13801/j.cnki.fhclxb.20191031.002
    [18] 王宝霞, 李大纲, 汪钟凯.  聚苯胺/(蒙脱土-纳米纤维素)三元复合电极材料的制备及电化学性能, 复合材料学报. 2020, 37(): 1-10.
    [19] 朱彬, 刘盼, 吕东风, 崔燚, 魏恒勇, 陈越军, 魏颖娜, 卜景龙.  NiCo2O4纳米线/SiC复合纤维制备及其电化学性能, 复合材料学报. 2020, 37(7): 1684-1694. doi: 10.13801/j.cnki.fhclxb.20191121.001
    [20] 赵雪静, 孙晓君, 魏金枝, 张婷, 刘欣然.  电化学法原位合成Zn/Co-ZIF及电容性能, 复合材料学报. 2020, 37(): 1-8.
  • 加载中
计量
  • 文章访问数:  146
  • HTML全文浏览量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 录用日期:  2020-02-22
  • 网络出版日期:  2020-09-25

目录

    /

    返回文章
    返回