留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZrO2(Y2O3)含量对双峰晶粒度分布Mo-12Si-8.5B-ZrO2(Y2O3)复合材料力学性能的影响

颜建辉 康蓉 唐幸 汪异 邱敬文

颜建辉, 康蓉, 唐幸, 等. ZrO2(Y2O3)含量对双峰晶粒度分布Mo-12Si-8.5B-ZrO2(Y2O3)复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(11): 3747-3756. doi: 10.13801/j.cnki.fhclxb.20210129.002
引用本文: 颜建辉, 康蓉, 唐幸, 等. ZrO2(Y2O3)含量对双峰晶粒度分布Mo-12Si-8.5B-ZrO2(Y2O3)复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(11): 3747-3756. doi: 10.13801/j.cnki.fhclxb.20210129.002
YAN Jianhui, KANG Rong, TANG Xing, et al. Effect of ZrO2(Y2O3) content on mechanical properties of Mo-12Si-8.5B-ZrO2(Y2O3) composites with bimodal grain-size distribution[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3747-3756. doi: 10.13801/j.cnki.fhclxb.20210129.002
Citation: YAN Jianhui, KANG Rong, TANG Xing, et al. Effect of ZrO2(Y2O3) content on mechanical properties of Mo-12Si-8.5B-ZrO2(Y2O3) composites with bimodal grain-size distribution[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3747-3756. doi: 10.13801/j.cnki.fhclxb.20210129.002

ZrO2(Y2O3)含量对双峰晶粒度分布Mo-12Si-8.5B-ZrO2(Y2O3)复合材料力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20210129.002
基金项目: 国家自然科学基金 (51475161);湖南省自然科学基金(2020 JJ4025)
详细信息
    通讯作者:

    颜建辉,博士,教授,博士生导师,研究方向为高温结构材料  E-mail:yanjianhui88@163.com

  • 中图分类号: TB331

Effect of ZrO2(Y2O3) content on mechanical properties of Mo-12Si-8.5B-ZrO2(Y2O3) composites with bimodal grain-size distribution

  • 摘要: 多相Mo-12Si-8.5B合金是一种很有应用前景的高温结构材料,为了同时提高Mo-12Si-8.5B合金的强度和韧性,提出了采用纳米ZrO2(Y2O3)强韧化具有双峰晶粒度分布Mo-12Si-8.5B复合材料的方法。首先采用溶胶-凝胶和高温氢还原法制备了纳米Mo-ZrO2(Y2O3)复合粉末,然后以纳米Mo-ZrO2(Y2O3)粉末和微米Mo粉末为原材料,采用放电等离子烧结(SPS)技术制备了具有双峰晶粒度分布的Mo-12Si-8.5B-ZrO2(Y2O3)复合材料。结果表明,随着ZrO2(Y2O3)含量的增加,制备的Mo-ZrO2(Y2O3)纳米粉末的粒度和烧结体相对致密度均逐渐减小,ZrO2(Y2O3)含量小于2.5wt%时,烧结体的相对致密度均大于98.1%。当ZrO2(Y2O3)含量为1.5wt%和2.5wt%时,复合材料具有较高的硬度(9.76~9.98 GPa),抗弯强度(672~678 MPa)和断裂韧性(12.68~12.82 MPa·m1/2)。Mo-12Si-8.5B-ZrO2(Y2O3)复合材料中Mo晶粒细化、粗细Mo晶粒的晶界强化和纳米ZrO2(Y2O3)颗粒第二相强化是提高硬度和抗弯强度主要原因;复合材料中粗晶粒Mo和纳米ZrO2(Y2O3)有助于断裂韧性的提高,材料的增韧机制主要是裂纹偏转和裂纹桥接。

     

  • 图  1  不同ZrO2(Y2O3)含量Mo-ZrO2(Y2O3)粉末XRD图谱

    Figure  1.  XRD patterns of the Mo-ZrO2(Y2O3) powders with different contents of ZrO2(Y2O3)

    图  2  不同含量ZrO2(Y2O3)的Mo-ZrO2(Y2O3)复合粉末的SEM图像

    Figure  2.  SEM images of the Mo-ZrO2(Y2O3) composites powders with different contents of ZrO2(Y2O3) ((a), (d) Mo-0wt%ZrO2(Y2O3); (b), (e) Mo-5.0wt%ZrO2(Y2O3); (c), (f) Mo-15.6wt%ZrO2(Y2O3))

    图  3  放电等离子烧结(SPS)后Mo-12Si-8.5B-ZrO2(Y2O3)复合材料的XRD图谱

    Figure  3.  XRD patterns of the Mo-12Si-8.5B-ZrO2(Y2O3) composites after spark plasma sintering (SPS)

    图  4  烧结后Mo-12Si-8.5B-ZrO2(Y2O3)复合材料的微观组织

    Figure  4.  Microstructures of the Mo-12Si-8.5B-ZrO2(Y2O3) composites after sintering((a) Mo-12Si-8.5B-0wt%ZrO2(Y2O3); (b) Mo-12Si-8.5B-1.5wt%ZrO2(Y2O3); (c) TEM image of Mo-12Si-8.5B-1.5wt%ZrO2(Y2O3); (d) EDS spectra of spherical particles in Fig.4(c))

    图  5  Mo-12Si-8.5B-ZrO2(Y2O3)复合材料的相对致密度

    Figure  5.  Relative density of the Mo-12Si-8.5B-ZrO2(Y2O3) composites

    图  6  Mo-12Si-8.5B-ZrO2(Y2O3)复合材料硬度和抗弯强度

    Figure  6.  Hardness and flexural strength of Mo-12Si-8.5B-ZrO2(Y2O3) composites

    图  7  不同含量ZrO2(Y2O3) 的Mo-12Si-8.5B-ZrO2(Y2O3)复合材料的断口形貌

    Figure  7.  Fracture morphologies of the Mo-12Si-8.5B-ZrO2(Y2O3) composites ((a) Mo-12Si-8.5B-0wt%ZrO2(Y2O3); (b) Mo-12Si-8.5B-1.5wt%ZrO2(Y2O3); (c) Mo-12Si-8.5B-2.5wt%ZrO2(Y2O3); (d) Mo-12Si-8.5B-10wt%ZrO2(Y2O3))

    图  8  Mo-12Si-8.5B-ZrO2(Y2O3)复合材料的断裂韧性

    Figure  8.  Fracture toughness of the Mo-12Si-8.5B-ZrO2(Y2O3) composites

    图  9  Mo-12Si-8.5B-2.5wt%ZrO2(Y2O3)压痕裂纹扩展背散射BSE图像

    Figure  9.  BSE image of the crack propagation path of the Vickers indentation for Mo-12Si-8.5B-2.5wt%ZrO2(Y2O3)

    图  10  Mo-12Si-8.5B-ZrO2(Y2O3)复合材料压痕裂纹扩展图

    Figure  10.  Crack propagation of indentation in the Mo-12Si-8.5B-ZrO2(Y2O3) composites ((a) Mo-12Si-8.5B-0wt%ZrO2(Y2O3); (b) Mo-12Si-8.5B-1.5wt%ZrO2(Y2O3); (c) Mo-12Si-8.5B-2.5wt%ZrO2(Y2O3); (d) Mo-12Si-8.5B-10wt%ZrO2(Y2O3))

    表  1  Mo-12Si-8.5B-ZrO2(Y2O3)复合材料所需Mo-ZrO2(Y2O3)粉末

    Table  1.   Mo-ZrO2 (Y2O3) powders required in the Mo-12Si-8.5B-ZrO2 (Y2O3) composites

    SpecimenComposition of Mo-ZrO2(Y2O3) powders
    Mo-12Si-8.5B Mo-0wt%ZrO2(Y2O3)
    Mo-12Si-8.5B-0.5wt% ZrO2(Y2O3) Mo-1.75wt%ZrO2(Y2O3)
    Mo-12Si-8.5B-1.5wt% ZrO2(Y2O3) Mo-5.0wt%ZrO2(Y2O3)
    Mo-12Si-8.5B-2.5wt% ZrO2(Y2O3) Mo-8.2wt%ZrO2(Y2O3)
    Mo-12Si-8.5B-5wt% ZrO2(Y2O3) Mo-15.6wt%ZrO2(Y2O3)
    Mo-12Si-8.5B-10wt% ZrO2(Y2O3) Mo-28.0wt%ZrO2(Y2O3)
    下载: 导出CSV
  • [1] LIU L, SHI C, ZHANG C, et al. Microstructure, microhardness and oxidation behavior of Mo-Si-B alloys in the Moss+Mo2B+Mo5SiB2 three phase region[J]. Intermetallics,2020,116:106618. doi: 10.1016/j.intermet.2019.106618
    [2] LI R, LI B, CHEN X, et al. Variation of phase composition of Mo-Si-B alloys induced by boron and their mechanical properties and oxidation resistance[J]. Materials Science and Engineering: A,2019,749:196-209. doi: 10.1016/j.msea.2019.02.008
    [3] CHOE H, CHEN D, SCHNEIBEL J H, et al. Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo-12Si-8.5B (at. %) intermetallic[J]. Intermetallics,2001,9(4):319-329. doi: 10.1016/S0966-9795(01)00008-5
    [4] ZHANG G J, DANG Q, KOU H, et al. Microstructure and mechanical properties of lanthanum oxide-doped Mo-12Si-8.5B(at%) alloys[J]. Journal of Alloys and Compounds, 2013, 15: S493-S498.
    [5] KRÜGER M, FRANZ S, SAAGE H, et al. Mechanically alloyed Mo-Si-B alloys with a continuous α-Mo matrix and improved mechanical properties[J]. Intermetallics,2008,16(7):933-941. doi: 10.1016/j.intermet.2008.04.015
    [6] LI B, ZHANG G J, JIANG F, et al. Characterization of Mo-Si-B nanocomposite powders produced using mechanical alloying and powder heat treatment[J]. Journal of Materials Science& Technology,2015,31(10):995-1000.
    [7] LI B, ZHANG G J, JIANG F, et al. Preparation of fine-grained Mo-12Si-8.5B alloys with improved mechanical properties via a mechanical alloying process[J]. Journal of Alloys and Compounds,2014,609:80-85. doi: 10.1016/j.jallcom.2014.04.141
    [8] WANG J, REN S, LI R, et al. Microstructure and improved mechanical properties of ultrafine-grained Mo-12Si-8.5B (at. %) alloys with addition of ZrB2[J]. Progress in Natural Science: Materials International,2018,28(3):371-377. doi: 10.1016/j.pnsc.2018.04.004
    [9] MAJUMDAR S, KUMAR A, SCHLIEPHAKE D, et al. Microstructural and micro-mechanical properties of Mo-Si-B alloyed with Y and La[J]. Materials Science and Engineering: A,2013,573:257-263. doi: 10.1016/j.msea.2013.02.053
    [10] LI W H, ZHANG G J, WANG S X, et al. Ductility of Mo-12Si-8.5B alloys doped with lanthanum oxide by the liquid-liquid doping method[J]. Journal of Alloys and Compounds,2015,642:34-39. doi: 10.1016/j.jallcom.2015.04.047
    [11] LI R, LI B, WANG T, et al. Improved fracture toughness of a Mo-12Si-8.5B-3Zr alloy by grain coarsening and its multiple toughening mechanisms[J]. Journal of Alloys and Compounds,2018,743:716-727. doi: 10.1016/j.jallcom.2018.01.398
    [12] YAN J H, WANG Y, ZHOU P, et al. Microstructures and room temperature mechanical properties of Mo-12Si-8.5B-8Cr alloy[J]. Transactions of the Indian Institute of Metals,2018,71(1):245-251. doi: 10.1007/s12666-017-1173-z
    [13] ZHA M, ZHANG H M, YU Z Y, et al. Bimodal microstructure-A feasible strategy for high-strength and ductile metallic materials[J]. Journal of Materials Science & Technology,2018,34(2):257-264.
    [14] BUI Q H. Heterogeneous plastic deformation in bimodal bulk ultrafine-grained nickel[J]. Journal of Materials Science,2012,47(4):1902-1909. doi: 10.1007/s10853-011-5979-5
    [15] FAN G J, CHOO H, LIAW P K, et al. Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution[J]. Acta Materialia,2006,54(7):1759-1766. doi: 10.1016/j.actamat.2005.11.044
    [16] WANG Y M, CHEN M W, ZHOU F H, et al. High tensile ductility in a nanostructured metal[J]. Nature,2002,419(6910):912-915. doi: 10.1038/nature01133
    [17] LI R, LI B, CHEN X, et al. Enhanced fracture toughness and toughening mechanisms of fine-grained Mo-12Si-8.5B alloy with a bi-modally structured α-Mo grain[J]. Materials Science & Engineering:A,2020,772:138684.
    [18] CUI C P, ZHU X G, LIU S L, et al. Effect of nano-sized ZrO2 on high temperature performance of Mo-ZrO2 alloy[J]. Journal of Alloys and Compounds,2018,768:81-87. doi: 10.1016/j.jallcom.2018.07.214
    [19] 康蓉, 颜建辉, 李茂键. 溶胶凝胶/高温氢还原法制备纳米Mo-ZrO2(Y2O3)复合粉末[J]. 稀有金属, 2021, 45(3): 288-296.

    KANG R, YAN J H, LI M J. Preparation of nanometer Mo-ZrO2(Y2O3) composite powder by sol-gel and high temperature hydrogen reduction[J]. Chinese Journal of Rare Metals, 2021, 45(3): 288-296(in Chinese).
    [20] LI Z, XU L J, WEI S H, et al. Fabrication and mechanical properties of tungsten alloys reinforced with c-ZrO2 particles[J]. Journal of Alloys and Compounds,2018,769:694-705. doi: 10.1016/j.jallcom.2018.07.342
    [21] GHADERI HAMIDI A, ARABI H, VAHDATI KHAKI J. Sintering of a nano-crystalline tungsten heavy alloy powder[J]. International Journal of Refractory Metals & Hard Materials,2019,80:204-209.
    [22] SCHNEIBEL J H, TORTORELLI P F, RITCHIE R O, et al. Optimization of Mo-Si-B intermetallics[J]. Metallurgical & Materials Transactions A,2005,36:525-531.
    [23] 徐健建, 颜建辉, 汪异, 等. W对Mo-Si-B合金微观组织和力学性能的影响[J]. 材料热处理学报, 2015, 36(8):22-27.

    XU J J, YAN J H, WANG Y, et al. Effect of W addition on microstructure and mechanical properties of Mo-Si-B alloy[J]. Transactions of Materials and Heat Treatment,2015,36(8):22-27(in Chinese).
    [24] LI R, ZHANG G J, LI B, et al. The multi-scale microstructure and strengthening mechanisms of Mo-12Si-8.5BxZr (at. %) alloys[J]. International Journal of Refractory Metals and Hard Materials November. 2017, 68: 65-74.
    [25] WU X L, ZHU Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties[J]. Materials Research Letters,2017,5(8):527-532. doi: 10.1080/21663831.2017.1343208
    [26] ASHBY M F, BLUNT F J, BANNISTER M K. Flow characteristics of highly constrained metal wires[J]. Acta Metallurgica,1989,37(7):1847-1857. doi: 10.1016/0001-6160(89)90069-2
    [27] LU G Y, LEDERICH R, SOBOYEJO W. Residual stresses and transformation toughening in MoSi2 composites reinforced with partially stabilized zirconia[J]. Materials Science and Engineering: A,1996,210(1-2):25-41. doi: 10.1016/0921-5093(95)10075-X
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1105
  • HTML全文浏览量:  572
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 录用日期:  2021-01-16
  • 网络出版日期:  2021-01-29
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回