留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP筋与自密实混凝土黏结性能的试验研究

吴丽丽 王慧 杨畅涵 王云飞 杨璐

吴丽丽, 王慧, 杨畅涵, 等. GFRP筋与自密实混凝土黏结性能的试验研究[J]. 复合材料学报, 2021, 38(10): 3484-3494. doi: 10.13801/j.cnki.fhclxb.20210207.001
引用本文: 吴丽丽, 王慧, 杨畅涵, 等. GFRP筋与自密实混凝土黏结性能的试验研究[J]. 复合材料学报, 2021, 38(10): 3484-3494. doi: 10.13801/j.cnki.fhclxb.20210207.001
WU Lili, WANG Hui, YANG Changhan, et al. Experimental study on bond properties between GFRP bars and self compacting concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3484-3494. doi: 10.13801/j.cnki.fhclxb.20210207.001
Citation: WU Lili, WANG Hui, YANG Changhan, et al. Experimental study on bond properties between GFRP bars and self compacting concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3484-3494. doi: 10.13801/j.cnki.fhclxb.20210207.001

GFRP筋与自密实混凝土黏结性能的试验研究

doi: 10.13801/j.cnki.fhclxb.20210207.001
基金项目: 国家自然科学基金(51678564);北京工业大学城市与工程安全减灾教育部重点实验室开放基金(2020B07)
详细信息
    通讯作者:

    吴丽丽,博士,教授,博士生导师,研究方向为钢-混凝土组合结构 E-mail:jennywll@163.com

  • 中图分类号: TB332

Experimental study on bond properties between GFRP bars and self compacting concrete

  • 摘要: 为了研究玻璃纤维增强树脂复合材料(GFRP)筋与自密实混凝土(SCC)的黏结性能,制作了66个GFRP/SCC试件进行中心拉拔试验,研究SCC混凝土保护层厚度、GFRP筋直径和黏结长度以及SCC中添加纤维种类等因素对两者黏结性能的影响,并对试件的破坏形式进行分析。结果表明:试件主要出现了三种破坏形式,即劈裂破坏、拔出破坏、拔出带缝破坏;通过电镜扫描发现SCC浇筑方向对GFRP筋与SCC黏结界面的结构有一定影响,GFRP筋上部界面与SCC黏结更紧密。当SCC保护层厚度由4D增大至7D时,黏结强度提高了约44.05%;当GFRP筋黏结长度由5D增大至15D时,黏结强度降低了约65.43%;当GFRP筋直径由12 mm增大至16 mm时,黏结强度降低了约22.57%;SCC中添加聚丙烯纤维、钢纤维、聚丙烯纤维+钢纤维的试件黏结强度比不添加纤维的试件黏结强度分别提高12.80%、15.16%、15.09%。可以通过适当增加SCC保护层厚度、在SCC中添加纤维等措施来提高GFRP/SCC试件的黏结强度。

     

  • 图  1  拉拔GFRP筋/SCC试件

    Figure  1.  GFRP bars/SCC specimens

    PVC—Polyvinyl chloride

    图  2  加载实物图

    Figure  2.  Test set-up

    图  3  GFRP筋/SCC典型的破坏形式

    Figure  3.  Typical failure forms of GFRP bars/SCC

    图  4  GFRP筋与SCC黏结界面微观扫描形态

    Figure  4.  SEM images on bond interface between GFRP bars and SCC

    图  5  不同参数下GFRP筋/SCC试件加载端的典型黏结-滑移曲线

    Figure  5.  Typical bond stress-slip relationship for the loaded end of GFRP bars/SCC specimens under different parameters

    图  6  GFRP筋/SCC加载端和自由端黏结-滑移曲线对比

    Figure  6.  Comparison of bond stress-slip relationship between loaded end and free end of GFRP bars/SCC

    图  7  SCC保护层厚度对GFRP筋与SCC黏结强度的影响

    Figure  7.  Influence of SCC cover thickness on ultimate bond strength between GFRP bars and SCC

    图  8  GFRP筋/SCC拉拔过程受力示意图

    Figure  8.  Diagram of force in pull-out process for GFRP bars/SCC

    图  9  GFRP筋黏结长度对GFRP筋与SCC黏结强度的影响

    Figure  9.  Influence of bond length of GFRP bars on ultimate bond strength between GFRP bars and SCC

    图  10  GFRP筋直径对GFRP筋与SCC黏结强度的影响

    Figure  10.  Influence of diameter of GFRP bars on ultimate bond strength between GFRP bars and SCC

    图  11  纤维种类对GFRP筋与SCC黏结强度的影响

    Figure  11.  Influence of fiber types on ultimate bond strength between GFRP bars and SCC

    表  1  纤维物理性能

    Table  1.   Physical properties of fibers

    VarietyDiameter/
    mm
    Length/
    mm
    Length/
    Diameter
    Density/
    (g·cm−3)
    Elastic
    modulus/GPa
    Tensile
    strength/MPa
    Breaking
    elongation/%
    Surface friction
    coefficient
    SF 0.22 13 59.1 7.85 100 2800 10.1 0.35
    PP 0.9 40 44.4 0.92 9.05 500 0.63
    Notes: SF—Steel fiber; PP—Polypropylene fiber.
    下载: 导出CSV

    表  2  C60自密实混凝土(SCC)配合比

    Table  2.   C60 self compacting concrete (SCC) mix proportion

    CementFly ashSandPebbleWater-reducerWaterWater-binder ratioSand ratio/%
    2.980.995.285.510.0310.2749
    下载: 导出CSV

    表  3  玻璃纤维增强树脂复合材料(GFRP)筋物理参数

    Table  3.   Physical parameters of glass fiber reinforced polymer (GFRP) bars

    Diameter/mmRib pitch dr/mmRib height hr/mmRib angle α/(°)Effective diameter de/mm
    12 12 0.72 71.3 12
    14 14 0.84 71.3 14
    16 16 0.96 71.3 16
    下载: 导出CSV

    表  4  中心拉拔GFRP筋/SCC试件明细

    Table  4.   Schedule of central pull-out GFRP bars/SCC specimen

    Serial numberBar diameter D/mmBond length/mmCover thickness/mmSize/mmNumber
    12GFRP/SCC(4D-5D) 12 60(5D) 48(4D) 108×108×150 6
    12GFRP/SCC(5D-5D) 12 60(5D) 60(5D) 132×132×150 6
    12GFRP/SCC(6D-5D) 12 60(5D) 72(6D) 156×156×150 6
    12GFRP/SCC(7D-5D) 12 60(5D) 84(7D) 180×180×150 6
    12GFRP/SCC(6D-10D) 12 120(10D) 72(6D) 156×156×150 6
    12GFRP/SCC(6D-15D) 12 180(15D) 72(6D) 156×156×200 6
    14GFRP/SCC(6D-5D) 14 70(5D) 84(6D) 182×182×150 6
    16GFRP/SCC(6D-5D) 16 80(5D) 96(6D) 208×208×150 6
    PP-12GFRP/SCC(6D-5D) 12 60(5D) 72(6D) 156×156×150 6
    SF-12GFRP/SCC(6D-5D) 12 60(5D) 72(6D) 156×156×150 6
    SF-PP-12GFRP/SCC(6D-5D) 12 60(5D) 72(6D) 156×156×150 6
    Notes: Serial number of bond specimens apply a-bGFRP/SCC(c-d): a—Types of fiber (i.e., PP—Polypropylene fiber; SF—Steel fiber; SF-PP—Polypropylene fiber and steel fiber); b—Diameter of GFRP bar; c—Cover thickness of SCC (D—Diameter of GFRP bar); d—Bond length.
    下载: 导出CSV

    表  5  GFRP筋/SCC中心拉拔试验结果

    Table  5.   Results of central pull-out test for GFRP bars/SCC

    Serial numberS1/mmS2/mmFmax/kNτmax/MPaFailure mode
    12GFRP/SCC(4D-5D)-1 1.70 0.43 24.58 10.87 P
    12GFRP/SCC(4D-5D)-2 1.81 0.47 25.32 11.20 P
    12GFRP/SCC(4D-5D)-3 1.75 0.43 25.69 11.36 P
    12GFRP/SCC(4D-5D)-4 1.69 0.42 26.51 11.93 P
    12GFRP/SCC(4D-5D)-5 1.73 0.42 25.52 11.29 P
    12GFRP/SCC(4D-5D)-6 2.12 0.36 25.93 11.47 P
    12GFRP/SCC(5D-5D)-1 2.73 0.82 32.29 14.28 P
    12GFRP/SCC(5D-5D)-2 3.15 0.90 30.67 13.56 P
    12GFRP/SCC(5D-5D)-3 2.93 0.72 31.34 13.86 P
    12GFRP/SCC(5D-5D)-4 1.89 0.43 27.34 12.09 P
    12GFRP/SCC(5D-5D)-5 3.01 1.07 32.56 14.40 P
    12GFRP/SCC(5D-5D)-6 3.11 0.77 31.54 13.95 P
    12GFRP/SCC(6D-5D)-1 4.51 3.01 34.97 15.47 B
    12GFRP/SCC(6D-5D)-2 3.57 1.99 34.99 15.48 B
    12GFRP/SCC(6D-5D)-3 2.78 1.35 32.02 14.16 BF
    12GFRP/SCC(6D-5D)-4 3.20 1.37 32.83 14.52 BF
    12GFRP/SCC(6D-5D)-5 3.62 1.23 32.67 14.45 P
    12GFRP/SCC(6D-5D)-6 3.83 1.53 33.89 14.99 P
    12GFRP/SCC(7D-5D)-1 3.89 1.92 36.68 16.22 B
    12GFRP/SCC(7D-5D)-2 3.34 1.57 38.46 17.01 B
    12GFRP/SCC(7D-5D)-3 2.72 0.96 34.57 15.29 B
    12GFRP/SCC(7D-5D)-4 3.04 1.41 39.03 17.26 B
    12GFRP/SCC(7D-5D)-5 4.15 1.87 36.37 16.09 B
    12GFRP/SCC(7D-5D)-6 3.51 1.83 36.74 16.25 B
    12GFRP/SCC(6D-10D)-1 3.03 0.24 41.69 9.22 P
    12GFRP/SCC(6D-10D)-2 M
    12GFRP/SCC(6D-10D)-3 2.87 0.56 40.37 8.93 P
    12GFRP/SCC(6D-10D)-4 2.56 0.62 41.13 9.10 P
    12GFRP/SCC(6D-10D)-5 2.69 0.48 42.79 9.46 P
    12GFRP/SCC(6D-10D)-6 2.88 0.59 41.58 9.19 P
    12GFRP/SCC(6D-15D)-1 1.61 40.38 5.95 P
    12GFRP/SCC(6D-15D)-2 1.53 39.87 5.88 P
    12GFRP/SCC(6D-15D)-3 1.59 37.49 5.53 P
    12GFRP/SCC(6D-15D)-4 1.64 36.66 5.41 P
    12GFRP/SCC(6D-15D)-5 M
    12GFRP/SCC(6D-15D)-6 1.58 40.02 5.90 P
    14GFRP/SCC(6D-5D)-1 2.63 0.92 41.53 13.49 BF
    14GFRP/SCC(6D-5D)-2 2.49 0.75 39.85 12.95 BF
    14GFRP/SCC(6D-5D)-3 3.97 1.16 44.35 14.41 P
    14GFRP/SCC(6D-5D)-4 3.52 1.89 46.87 15.23 BF
    14GFRP/SCC(6D-5D)-5 1.89 46.67 15.17 P
    14GFRP/SCC(6D-5D)-6 2.67 0.88 43.27 14.06 M
    16GFRP/SCC(6D-5D)-1 1.99 0.14 45.90 11.42 P
    16GFRP/SCC(6D-5D)-2 M
    16GFRP/SCC(6D-5D)-3 1.59 0.30 46.34 11.53 P
    16GFRP/SCC(6D-5D)-4 1.67 0.21 49.86 12.40 P
    16GFRP/SCC(6D-5D)-5 M
    16GFRP/SCC(6D-5D)-6 1.95 0.21 42.68 10.62 P
    PP-12GFRP/SCC(6D-5D)-1 4.60 1.89 38.42 16.99 BF
    PP-12GFRP/SCC(6D-5D)-2 3.29 1.30 38.01 16.81 BF
    PP-12GFRP/SCC(6D-5D)-3 3.17 1.24 38.13 16.86 BF
    PP-12GFRP/SCC(6D-5D)-4 2.42 1.04 37.53 16.60 BF
    PP-12GFRP/SCC(6D-5D)-5 3.55 2.25 38.61 17.08 P
    PP-12GFRP/SCC(6D-5D)-6 2.48 1.16 36.46 16.13 P
    SF-12GFRP/SCC(6D-5D)-1 4.07 1.80 36.33 16.07 B
    SF-12GFRP/SCC(6D-5D)-2 3.81 1.78 38.65 17.10 B
    SF-12GFRP/SCC(6D-5D)-3 4.09 2.17 39.07 17.28 B
    SF-12GFRP/SCC(6D-5D)-4 3.57 1.85 39.85 17.63 B
    SF-12GFRP/SCC(6D-5D)-5 3.68 1.75 38.67 17.10 B
    SF-12GFRP/SCC(6D-5D)-6 4.15 1.97 39.26 17.36 B
    SF-PP-12GFRP/SCC(6D-5D)-1 4.10 2.15 40.84 18.06 BF
    SF-PP-12GFRP/SCC(6D-5D)-2 3.28 1.53 37.24 16.47 BF
    SF-PP-12GFRP/SCC(6D-5D)-3 4.23 2.20 37.14 16.43 B
    SF-PP-12GFRP/SCC(6D-5D)-4 4.25 1.76 39.54 17.49 B
    SF-PP-12GFRP/SCC(6D-5D)-5 3.12 0.89 37.20 16.45 B
    SF-PP-12GFRP/SCC(6D-5D)-6 3.94 2.06 39.79 17.59 B
    Notes: S1—Slip at the loaded end; S2—Slip at the free end; Fmax—Maximum pull-out load; τmax—Maximum bond strength; In the failure mode, P—Splitting failure; B—Pull-out failure; BF—Pull-out failure with cracks; M—Destroy of bottom anchor of GFRP bars.
    下载: 导出CSV
  • [1] 吴庆, 袁迎曙. 锈蚀钢筋力学性能退化规律试验研究[J]. 土木工程学报, 2008(12):42-47. doi: 10.3321/j.issn:1000-131X.2008.12.007

    WU Qing, YUAN Yingshu. Experimental study on the deterioration of mechanical properties of corroded steel bars[J]. China Civil Engineering Journal,2008(12):42-47(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.12.007
    [2] 施锦杰, 孙伟. 混凝土中钢筋锈蚀研究现状与热点问题分析[J]. 硅酸盐学报, 2010, 38(9):1753-1764.

    SHI Jinjie, SUN Wei. Recent research on steel corrosion in concrete[J]. Journal of the Chinese Ceramic Society,2010,38(9):1753-1764(in Chinese).
    [3] 薛伟辰, 王伟, 付凯. 碱环境下不同应力水平GFRP筋抗拉性能试验[J]. 复合材料学报, 2013, 30(6):67-75. doi: 10.3969/j.issn.1000-3851.2013.06.010

    XUE Weichen, WANG Wei, FU Kai. Experimental study on tensile properties of GFRP rebars under different stress levels as exposed to alkaline solution[J]. Acta Materiae Compositae Sinica,2013,30(6):67-75(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.010
    [4] 吴丽丽, 王云飞, 谢灵慧, 等. 玻璃纤维增强聚合物复合材料筋与工程水泥基复合材料黏结性能[J]. 复合材料学报, 2020, 37(3):696-706.

    WU Lili, WANG Yufei, XIE Linghui, et al. Bonding behavior between glass fiber reinforced polymer composite bars and engineered cementitious composite[J]. Acta Materiae Compositae Sinica,2020,37(3):696-706(in Chinese).
    [5] 郝庆多, 王言磊, 侯吉林, 等. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008(10):158-165, 179.

    HAO Qingduo, WANG Yanlei, HOU Jilin, et al. Experimental study on bond behavior of GFRP ribbed rebars[J]. Engineering Mechanics,2008(10):158-165, 179(in Chinese).
    [6] HAO Qingduo, WANG Yanlei, HE Zheng, et al. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials,2008,23(2):865-871.
    [7] CHAALLAL O, BENMOKRANE B. Pullout and bond of glass-fibre rods embedded in concrete and cement grout[J]. Materials and Structures,1993(26):167-175.
    [8] 周继凯, 杜钦庆, 陈诗学, 等. GFRP筋拉伸力学性能温度效应试验研究[J]. 岩石力学与工程学报, 2008, 27(S1):2707-2714.

    ZHOU Jikai, DU Qinqing, CHEN Shixue, et al. Experimental research on thermal effect of tensile mechanical properties of gfrp rebar[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(S1):2707-2714(in Chinese).
    [9] COSENZA E. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [10] WANG Huanzi. Static and fatigue bond characteristics of FRP rebars embedded in fiber-reinforced concrete[J]. Journal of Composite Materials,2010,44(13):1605-1622. doi: 10.1177/0021998309355845
    [11] COSENZA E, MANFREDI G, REALFONZO R. 20 Analytical modelling of bond between FRP reinforcing bars and concrete[C]. Non-metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium, 1995: 164-171.
    [12] OKELO R., YUAN R. L. Bond strength of fiber reinforced polymer rebars in normal strength concrete[J]. Journal of Composites for Construction,2005,9(3):203-213. doi: 10.1061/(ASCE)1090-0268(2005)9:3(203)
    [13] 陈剑. GFRP筋与纤维混凝土粘结滑移试验研究[D]. 大连: 大连理工大学, 2008.

    CHEN Jian. The experimental research on bond-slip performance of GFRP bars embedded in fiber reinforced concrete[D]. Dalian: Dalian University of Technology, 2008(in Chinese).
    [14] ISLAM S, AFEFY H M, SENNAH K, et al. Bond characteristics of straight and headed end, ribbed surface, GFRP bars embedded in high strength concrete[J]. Construction and Building Materials,2015,83:283-298. doi: 10.1016/j.conbuildmat.2015.03.025
    [15] YAN Fei, LIN Zhibin, ZHANG Dalu, et al. Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution[J]. Composites Part B: Eningeering,2016,116:406-421.
    [16] 郝庆多, 王言磊, 欧进萍. 拉拔条件下GFRP筋与混凝土粘结强度试验研究[J]. 建筑结构学报, 2008(1):103-111. doi: 10.3321/j.issn:1000-6869.2008.01.015

    HAO Qingduo, WANG Yanlei, OU Jinping. Experimental investigation on bond strength between GFRP rebars and concrete under pullout conditions[J]. Journal of Building Structures,2008(1):103-111(in Chinese). doi: 10.3321/j.issn:1000-6869.2008.01.015
    [17] FARHAD A, FATEMEH H, AFSANEH V, et al. High-performance fibre-reinforced heavyweight self-compacting concrete: Analysis of fresh and mechanical properties[J]. Construction and Building Materials,2020,232:117230. doi: 10.1016/j.conbuildmat.2019.117230
    [18] GIL A M, KHAYAT K H, TUTIKIAN B F. An experimental approach to design self-consolidating concrete[J]. Construction and Building Materials,2019,229:116939. doi: 10.1016/j.conbuildmat.2019.116939
    [19] 吕兴军, 丁言兵, 曹明莉. 自密实混凝土配合比设计研究进展[J]. 混凝土, 2013(8):696-706.

    LV Xingjun, DING Yanbing, CAO Mingli. Progress of the researching on proportional rate design methods of self-compacting concrete[J]. Concrete,2013(8):696-706(in Chinese).
    [20] 罗素蓉, 郑建岚, 王国杰. 自密实高性能混凝土力学性能的研究与应用[J]. 工程力学, 2005(1):164-169. doi: 10.3969/j.issn.1000-4750.2005.01.029

    LUO Surong, ZHENG Jianlan, WANG Guojie. On mechanical property of self-compacting concrete and its engineering application[J]. Engineering Mechanics,2005(1):164-169(in Chinese). doi: 10.3969/j.issn.1000-4750.2005.01.029
    [21] 刘运华, 谢友均, 龙广成. 自密实混凝土研究进展[J]. 硅酸盐学报, 2007(5):671-678. doi: 10.3321/j.issn:0454-5648.2007.05.028

    LIU Yunhua, XIE Youjun, LONG Guangcheng. Progress of research on self-compacting concrete[J]. Journal of the Chinese Ceramic Society,2007(5):671-678(in Chinese). doi: 10.3321/j.issn:0454-5648.2007.05.028
    [22] 丁一宁, 李娟, 王宝民, 等. 纤维对GFRP筋与自密实混凝土基体粘结性能影响分析[J]. 建筑结构学报, 2011, 32(1):63-69.

    DING Yining, LI Juan, WANG Baomin, et al. Effect of fibers on bond behavior between GFRP bars and self-compacting concrete[J]. Journal of Building Structures,2011,32(1):63-69(in Chinese).
    [23] BAZLI M, ASHRAFI H, OSKOUEI A V. Experiments and probabilistic models of bond strength between GFRP bar and different types of concrete under aggressive environments[J]. Construction and Building Materials,2017,148:429-443. doi: 10.1016/j.conbuildmat.2017.05.046
    [24] ZEMOUR N, ASADIAN A, AHMED E A, et al. Experimental study on the bond behavior of GFRP bars in normal and self-consolidating concrete[J]. Construction and Building Materials,2018,189:869-881. doi: 10.1016/j.conbuildmat.2018.09.045
    [25] 刘洋. 纤维对筋材与自密实混凝土的粘结性能的影响[D]. 大连: 大连理工大学, 2010.

    LIU Yang. Fiber effect on bond behaviour between bars and self-compacting concrete matrix[D]. Dalian: Dalian University of Technology, 2010(in Chinese).
    [26] ACI Committee 440. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer bars: ACI 440.1R—15[S]. Michigan: American Concrete Institute, 2015.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  879
  • HTML全文浏览量:  370
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 录用日期:  2021-01-25
  • 网络出版日期:  2021-02-07
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回