留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene基薄膜的有序组装及其在储能和电磁干扰屏蔽中的应用

刘俊杰 杨雯杰 杨伟 鲁红典

刘俊杰, 杨雯杰, 杨伟, 等. MXene基薄膜的有序组装及其在储能和电磁干扰屏蔽中的应用[J]. 复合材料学报, 2021, 38(8): 2404-2417. doi: 10.13801/j.cnki.fhclxb.20210408.001
引用本文: 刘俊杰, 杨雯杰, 杨伟, 等. MXene基薄膜的有序组装及其在储能和电磁干扰屏蔽中的应用[J]. 复合材料学报, 2021, 38(8): 2404-2417. doi: 10.13801/j.cnki.fhclxb.20210408.001
LIU Junjie, YANG Wenjie, YANG Wei, et al. Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2404-2417. doi: 10.13801/j.cnki.fhclxb.20210408.001
Citation: LIU Junjie, YANG Wenjie, YANG Wei, et al. Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2404-2417. doi: 10.13801/j.cnki.fhclxb.20210408.001

MXene基薄膜的有序组装及其在储能和电磁干扰屏蔽中的应用

doi: 10.13801/j.cnki.fhclxb.20210408.001
基金项目: 安徽省自然科学基金杰出青年科学基金(2008085J26);安徽省重点研究与开发计划(202004a05020044)
详细信息
    通讯作者:

    杨伟,博士,教授,硕士生导师,研究方向为低维纳米材料、聚合物复合材料 E-mail:yangwei@hfuu.edu.cn

  • 中图分类号: TB33

Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding

  • 摘要: 5G电子消费产品日益普及,给人们的生活带来便利的同时也存在一些问题,如电磁干扰(EMI)风险大幅度提高,5G网络耗电速度快等。因此需要开发具有高EMI屏蔽性能的膜材料和高容量的电极材料来解决这些问题。作为一种新型二维材料,过渡金属碳化物、氮化物或氮碳化物(称为MXene)具有出色的导电性、低密度、亲水性表面、二维层状形态和可调节的表面化学性质等诸多优势。此外,由于MXene具有容易成膜的特点,在EMI屏蔽和储能设备等领域具有巨大的应用潜力。目前已经报道了很多基于MXene复合薄膜的工作,本文首先介绍了MXene纳米片的合成方法,然后讨论了MXene基复合薄膜的制备方法,目的是总结制备MXene复合薄膜的各种方法及其优缺点。其次,分别介绍了MXene在锂离子电池和超级电容器及EMI屏蔽膜中的应用,分析了目前的发展趋势,并且对目前主流的复合材料进行了对比,归纳了MXene复合薄膜在结构和性能上的特点和优势。最后,提出了目前MXene复合薄膜的发展所存在的问题,并对未来发展进行了展望。

     

  • 图  1  逐步真空辅助过滤制备钙离子交联海藻酸钠(SA)/蒙脱土(MMT)/Ti3C2Tx MXene的电三明治结构膜[29]

    Figure  1.  Constructed flexible and ultrathin sandwich MXene films with Ca2+cross-linked sodium alginate (SA)/montmorillonite (MMT)/Ti3C2Tx MXene composites through a feasible step-by-step vacuum-assisted filtration process[29]

    图  2  MXene、还原氧化石墨烯(rGO)和MXene/rGO薄膜制作示意图[58]

    Figure  2.  Schematic illustration of the fabrication of the MXene, reduced graphene oxide (rGO) and MXene/rGO films[58]

    图  3  MXene/棒状芳纶纳米纤维(ANF)复合膜制备工艺[90]

    Figure  3.  Preparation process of MXene/rod-like aramid nanofiber (ANF) composite film[90]

    图  4  d-Ti3C2Tx/纤维素纳米纤维(CNF)复合纸的制备过程说明[99]

    Figure  4.  Illustration of the preparation process of the d-Ti3C2Tx/ cellulose nanofiber (CNF) composite paper[99]

    表  1  MXene基复合薄膜电磁屏蔽性能

    Table  1.   EMI property of MXene-based films

    MaterialContent/
    wt%
    MethodThickness/
    µm
    Tensile strength/
    MPa
    Strain at
    fracture/%
    EMI SE/
    dB
    Ref.
    Synthetic polymer compound PVA 19.5 CA 27 44.4 [32]
    WAX 90 CP 1 000 76.1 [106]
    Epoxy 50 HP 1 400 17 [107]
    Paraffin 60 HP 2 000 39.1 [108]
    PANI 50 CP 1 500 23 [109]
    Polyurethane 80 VAF ≈10 96.1±7.7 5.3±0.3 47±3 [86]
    EPDM 6 CM 300 3.06 285 50 [88]
    ANF 90.9 VAF 12 46.51±4.3 0.94±0.1 34.71 [89]
    ANF 40 VAF ≈14 300.5±10.1 3.0±0.4 25 [90]
    Natural polymeric compound NR 40 VAF 65.6±4.5 34±5 4.5±0.8 47.8 [18]
    SA 90 VAF 8 57 [94]
    CA 90 VAF 26 54.3 [95]
    Cellulose DC 200 43 [98]
    CNF 50 VAF 167 135.4 16.7 25 [99]
    CNF 24.24 AVF 35 105±5 5.5±0.5 40 [104]
    TOCNF 40 VAF 38 212 4.25±0.25 32.5±2.5 [105]
    Chitosan 75 VAF 37 34.7±0.2 [110]
    CNC 60 VAF 8 57 40 [27]
    Others CB 64 VAF 60 [80]
    GO 50 VAF 7 209 29 [79]
    Al(NO3)3 VAF&DC 39 83.2 2.8±0.2 80 [85]
    PVDF/MXene/Ni 10 CM 360 41.9±1.6 9.5±0.5 34.4 [30]
    Notes: WAX—Paraffin wax; CNC—Cellulose nanocrystals; PVA—Polyvinyl alcohol; CNT—Carbon nanotubes; CB—Carbon black; AgNW—Silver nanowire; PVDF—Polyvinylidene fluoride; EPDM—Ethylene propylene diene rubber; ANF—Aramid nanofibers; NR—Natural rubber; SA—Sodium alginate; CA—Calcium alginate; CNF—Cellulose nanofiber; TOCNF—2,2,6,6-Tetramethyl-1-piperidinyloxy oxidized cellulose nanofibers; CP—Cold press; VAF—Vacuum-assisted filtration; CM—Casting method; SC—Spray-coating; HP—Hot press; DC—Dip-coating; AVF—Alternating vacuum filtration; EMI SE—Electromagnetic interference shielding effectiveness.
    下载: 导出CSV
  • [1] SHEN B, ZHAI W, ZHENG W. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials,2014,24(28):4542-4548. doi: 10.1002/adfm.201400079
    [2] YAN D-X, PANG H, LI B, et al. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding[J]. Advanced Functional Materials,2015,25(4):559-566. doi: 10.1002/adfm.201403809
    [3] HAN M, SHUCK C E, RAKHMANOV R, et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding[J]. ACS Nano,2020,14(4):5008-5016. doi: 10.1021/acsnano.0c01312
    [4] LU L, WEI X, ZHANG Y, et al. A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties[J]. Journal of Materials Chemistry C,2017,5(28):7035-7042. doi: 10.1039/C7TC02429K
    [5] DALAL J, LATHER S, GUPTA A, et al. EMI shielding properties of laminated graphene and PbTiO3 reinforced poly(3,4-ethylenedioxythiophene) nanocomposites[J]. Composites Science and Technology,2018,165(8):222-230.
    [6] SINGH K, OHLAN A, PHAM V H, et al. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution[J]. Nanoscale,2013,5(6):2411-2420. doi: 10.1039/c3nr33962a
    [7] SUN Y, CHEN D, LIANG Z. Two-dimensional MXenes for energy storage and conversion applications[J]. Materials Today Energy,2017,5:22-36. doi: 10.1016/j.mtener.2017.04.008
    [8] DENG R, CHEN B, LI H, et al. MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption[J]. Applied Surface Science,2019,488:921-930. doi: 10.1016/j.apsusc.2019.05.058
    [9] HE P, WANG X X, CAI Y Z, et al. Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding[J]. Nanoscale,2019,11(13):6080-6088. doi: 10.1039/C8NR10489A
    [10] WANG Y, GAO X, ZHANG L, et al. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber[J]. Applied Surface Science,2019,480:830-838. doi: 10.1016/j.apsusc.2019.03.049
    [11] ZHANG X, WANG H, HU R, et al. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles[J]. Applied Surface Science,2019,484:383-391. doi: 10.1016/j.apsusc.2019.03.264
    [12] AI J, LEI Y, YANG S, et al. SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries[J]. Chemical Engineering Journal,2019,357:150-158. doi: 10.1016/j.cej.2018.09.109
    [13] SHI C, BEIDAGHI M, NAGUIB M, et al. Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function[J]. Physical Review Letters,2014,112(12):125501. doi: 10.1103/PhysRevLett.112.125501
    [14] SUN S J, LIAO C, HAFEZ A M, et al. Two-dimensional MXenes for energy storage[J]. Chemical Engineering Journal,2018,338:27-45. doi: 10.1016/j.cej.2017.12.155
    [15] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [16] LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12):1600255. doi: 10.1002/aelm.201600255
    [17] MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials,2017,29(4):1632-1640. doi: 10.1021/acs.chemmater.6b04830
    [18] YANG W, LIU J J, WANG L L, et al. Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability[J]. Composites Part B: Engineering,2020,188:107875. doi: 10.1016/j.compositesb.2020.107875
    [19] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials,2017,29(18):7633-7644. doi: 10.1021/acs.chemmater.7b02847
    [20] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [21] MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications,2013,4:1716. doi: 10.1038/ncomms2664
    [22] NAGUIB M, UNOCIC R R, ARMSTRONG B L, et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”[J]. Dalton Transactions,2015,44(20):9353-9358. doi: 10.1039/C5DT01247C
    [23] LAKHE P, PREHN E M, HABIB T, et al. Process safety analysis for Ti3C2Tx MXene synthesis and processing[J]. Industrial & Engineering Chemistry Research,2019,58(4):1570-1579.
    [24] LIN B, YUEN A C Y, LI A, et al. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions[J]. Journal of hazardous materials,2020,381:120952. doi: 10.1016/j.jhazmat.2019.120952
    [25] SI J Y, TAWIAH B, SUN W L, et al. Functionalization of MXene nanosheets for polystyrene towards high thermal stability and flame retardant properties[J]. Polymers,2019,11(6):976. doi: 10.3390/polym11060976
    [26] DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie,2017,56(7):1825-1829. doi: 10.1002/anie.201609306
    [27] 刘张硕, 刘骥, 戴洋,等. 仿生构筑超薄MXene/CNC电磁屏蔽复合薄膜[J]. 无机材料学报, 2020, 35(1):99-104.

    LIU Z S, LIU J, DAI Y, et al. Bioinspired ultrathin MXene/CNC composite film for electromagnetic interference shielding[J]. Journal of Inorganic Materials,2020,35(1):99-104(in Chinese).
    [28] XIN W, XI G Q, CAO W T, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Advances,2019,9(51):29636-29644. doi: 10.1039/C9RA06399D
    [29] ZHANG Y, CHENG W, TIAN W, et al. Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance[J]. ACS Applied Materials Interfaces,2020,12(5):6371-6382. doi: 10.1021/acsami.9b18750
    [30] WANG S J, LI D S, JIANG L. Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films[J]. Advanced Materials Interfaces,2019,6(19):1900961. doi: 10.1002/admi.201900961
    [31] AHN S, HAN T H, MALESKI K, et al. A 2D titanium carbide mxene flexible electrode for high-efficiency light-emitting diodes[J]. Advanced Materials,2020,32(23):2000919. doi: 10.1002/adma.202000919
    [32] JIN X, WANG J, DAI L, et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances[J]. Chemical Engineering Journal,2020,380:122475. doi: 10.1016/j.cej.2019.122475
    [33] FENG Y, WU Q, DENG Q, et al. High dielectric and breakdown properties obtained in a PVDF based nanocomposite with sandwich structure at high temperature via all-2D design[J]. Journal of Materials Chemistry C,2019,7(22):6744-6751. doi: 10.1039/C9TC01378D
    [34] BORGES J, MANO J F. Molecular interactions driving the layer-by-layer assembly of multilayers[J]. Chemical Reviews,2014,114(18):8883-8942. doi: 10.1021/cr400531v
    [35] YUN J, ECHOLS I, FLOUDA P, et al. Layer-by-layer assembly of polyaniline nanofibers and MXene thin-film electrodes for electrochemical energy storage[J]. ACS Applied Materials & Interfaces,2019,11(51):47929-47938. doi: 10.1021/acsami.9b16692
    [36] QIN L, TAO Q, LIU X, et al. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors[J]. Nano Energy,2019,60:734-742. doi: 10.1016/j.nanoen.2019.04.002
    [37] LI J, LEVITT A, KURRA N, et al. MXene-conducting polymer electrochromic microsupercapacitors[J]. Energy Storage Materials,2019,20:455-461. doi: 10.1016/j.ensm.2019.04.028
    [38] YANG L, ZHENG W, ZHANG P, et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes[J]. Journal of Electroanalytical Chemistry,2018,830-831:1-6. doi: 10.1016/j.jelechem.2018.10.024
    [39] RAJAVEL K, LUO S, WAN Y, et al. 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105693. doi: 10.1016/j.compositesa.2019.105693
    [40] HUANG Y, WU D, WANG J, et al. Amphiphilic polymer promoted assembly of macroporous graphene/SnO2 frameworks with tunable porosity for high-performance lithium storage[J]. Small,2014,10(11):2226-2232. doi: 10.1002/smll.201303423
    [41] MO R, LEI Z, SUN K, et al. Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries[J]. Advance Materials,2014,26(13):2084-2088. doi: 10.1002/adma.201304338
    [42] PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science,2013,6(8):2338.
    [43] ZHANG X, HOU L, CIESIELSKI A, et al. 2D materials beyond graphene for high-performance energy storage applications[J]. Advanced Energy Materials,2016,6(23):1600671. doi: 10.1002/aenm.201600671
    [44] ZHANG Y, MU Z, YANG C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2018,28(38):1707578. doi: 10.1002/adfm.201707578
    [45] HUANG J, MENG R, ZU L, et al. Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries[J]. Nano Energy,2018,46:20-28. doi: 10.1016/j.nanoen.2018.01.030
    [46] SUN D, WANG M, LI Z, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries[J]. Electrochemistry Communications,2014,47:80-83. doi: 10.1016/j.elecom.2014.07.026
    [47] 刘浩, 姚卫棠. Ti基MXene及其复合材料在金属离子电池中的进展[J]. 复合材料学报, 2020, 37(12):2984-3003.

    LIU H, YAO W T. Research progress of Ti-based MXene and its composites in metal-ion batteries[J]. Acta Materiae Compositae Sinica,2020,37(12):2984-3003(in Chinese).
    [48] TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer[J]. Journal of the American Chemical Society,2012,134(40):16909-16916. doi: 10.1021/ja308463r
    [49] LU M, LI H, HAN W, et al. 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries[J]. Journal of Energy Chemistry,2019,31:148-153. doi: 10.1016/j.jechem.2018.05.017
    [50] WU J, WANG Y, ZHANG Y, et al. Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage[J]. Journal of Energy Chemistry,2020,47:203-209. doi: 10.1016/j.jechem.2019.11.029
    [51] LU M, ZHANG Y, CHEN J, et al. K+ alkalization promoted Ca2+ intercalation in V2CT MXene for enhanced Li storage[J]. Journal of Energy Chemistry,2020,49:358-364. doi: 10.1016/j.jechem.2020.03.002
    [52] MENG J, ZHANG F, ZHANG L, et al. Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries[J]. Journal of Energy Chemistry,2020,46:256-263. doi: 10.1016/j.jechem.2019.10.008
    [53] REN C E, ZHAO M-Q, MAKARYAN T, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage[J]. ChemElectroChem,2016,3(5):689-693. doi: 10.1002/celc.201600059
    [54] ZHANG P, SOOMRO R A, GUAN Z, et al. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage[J]. Energy Storage Materials,2020,29:163-171. doi: 10.1016/j.ensm.2020.04.016
    [55] ZHANG R, XUE Z, QIN J, et al. NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life[J]. Journal of Energy Chemistry,2020,50:143-153. doi: 10.1016/j.jechem.2020.03.018
    [56] LIU Y, YU J, GUO D, et al. Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage[J]. Journal of Alloys and Compounds,2020,815:152403. doi: 10.1016/j.jallcom.2019.152403
    [57] XU S, WEI G, LI J, et al. Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices[J]. Journal of Materials Chemistry A,2017,5(33):17442-17451. doi: 10.1039/C7TA05721K
    [58] MA Z, ZHOU X, DENG W, et al. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage[J]. ACS Applied Materials & Interfaces,2018,10(4):3634-3643. doi: 10.1021/acsami.7b17386
    [59] LIU Y, HE Y, VARGUN E, et al. 3D porous Ti3C2 MXene/NiCo-MOF composites for enhanced lithium storage[J]. Nanomaterials,2020,10(4):695. doi: 10.3390/nano10040695
    [60] XIONG C, ZHU G Y, JIANG H R, et al. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries[J]. Energy Storage Materials,2020,33:147-157. doi: 10.1016/j.ensm.2020.08.006
    [61] LI X, WEN C, LI H, et al. In situ decoration of nanosized metal oxide on highly conductive MXene nanosheets as efficient catalyst for Li-O2 battery[J]. Journal of Energy Chemistry,2020,47:272-280. doi: 10.1016/j.jechem.2020.02.016
    [62] ZHANG C, CUI L, ABDOLHOSSEINZADEH S, et al. Two-dimensional MXenes for lithium-sulfur batteries[J]. InfoMat,2020,2(4):613-638. doi: 10.1002/inf2.12080
    [63] ZHANG X, LIU Y, DONG S, et al. Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance[J]. Electrochimica Acta,2019,294:233-239. doi: 10.1016/j.electacta.2018.10.096
    [64] ZHANG Z, GUO M, TANG Y, et al. High areal capacitance of vanadium oxides intercalated Ti3C2 MXene for flexible supercapacitors with high mass loading[J]. Nanotechnology,2020,31(16):165403. doi: 10.1088/1361-6528/ab6689
    [65] RAN F, WANG T, CHEN S, et al. Constructing expanded ion transport channels in flexible MXene film for pseudocapacitive energy storage[J]. Applied Surface Science,2020,511:145627. doi: 10.1016/j.apsusc.2020.145627
    [66] CHEN H, YU L, LIN Z, et al. Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors[J]. Journal of Materials Science,2019,55(3):1148-1156.
    [67] YANG L, ZHENG W, ZHANG P, et al. Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors[J]. Electrochimica Acta,2019,300:349-356. doi: 10.1016/j.electacta.2019.01.122
    [68] LIU W, WANG Z, SU Y, et al. Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances[J]. Advanced Energy Materials,2017,7(22):1602834. doi: 10.1002/aenm.201602834
    [69] FANG Y, YANG B, HE D, et al. Porous and free-standing Ti3C2T -RGO film with ultrahigh gravimetric capacitance for supercapacitors[J]. Chinese Chemical Letters,2020,31(4):1004-1008. doi: 10.1016/j.cclet.2019.08.043
    [70] FAN Z, WANG Y, XIE Z, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage[J]. Advanced Science,2018,5(10):1800750. doi: 10.1002/advs.201800750
    [71] LI J, PENG W J, FU Z J, et al. Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix[J]. Composites Part B: Engineering,2019,171:204-213. doi: 10.1016/j.compositesb.2019.05.003
    [72] TAN Y-J, LI J, CAI J-H, et al. Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites[J]. Composites Part B: Engineering,2019,177:107378. doi: 10.1016/j.compositesb.2019.107378
    [73] LI J, CHEN J L, TANG X H, et al. Constructing nanopores in poly(oxymethylene)/multi-wall carbon nanotube nanocomposites via poly(l-lactide) assisting for improving electromagnetic interference shielding[J]. Journal of Colloid and Interface Science,2020,565:536-545. doi: 10.1016/j.jcis.2020.01.057
    [74] TANG X-H, LI J, TAN Y-J, et al. Achieve high performance microwave shielding in poly(ε-caprolactone)/multi-wall carbon nanotube composites via balancing absorption in conductive domains and multiple scattering at interfaces[J]. Applied Surface Science,2020,508:145178. doi: 10.1016/j.apsusc.2019.145178
    [75] ZENG Z, CHEN M, JIN H, et al. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding[J]. Carbon,2016,96:768-777. doi: 10.1016/j.carbon.2015.10.004
    [76] DALAL J, GUPTA A, LATHER S, et al. Poly (3,4-ethylene dioxythiophene) laminated reduced graphene oxide composites for effective electromagnetic interference shielding[J]. Journal of Alloys and Compounds,2016,682:52-60. doi: 10.1016/j.jallcom.2016.04.276
    [77] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials,2020,30(47):2000883.
    [78] WENG G-M, LI J, ALHABEB M, et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding[J]. Advanced Functional Materials,2018,28(44):1803360. doi: 10.1002/adfm.201803360
    [79] LIU J, LIU Z, ZHANG H B, et al. Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding[J]. Advanced Electronic Materials,2019,6(1):1901094.
    [80] FAN X, LI M, LI X, et al. Electromagnetic interference shielding Ti3C2T-bonded carbon black films with enhanced absorption performance[J]. Chinese Chemical Letters,2020,31(4):1026-1029. doi: 10.1016/j.cclet.2020.01.030
    [81] MIAO M, LIU R, THAIBOONROD S, et al. Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2020,8(9):3120-3126. doi: 10.1039/C9TC06361G
    [82] LIU Q, ZHANG Y, LIU Y, et al. Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management[J]. Journal of Alloys and Compounds,2020,860:158151.
    [83] ZHOU B, SU M, YANG D, et al. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance[J]. ACS Applied Materials & Interfaces,2020,12(36):40859-40869. doi: 10.1021/acsami.0c09020
    [84] CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(12):16643-16653. doi: 10.1021/acsnano.0c01635
    [85] LIU Z, ZHANG Y, ZHANG H B, et al. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2020,8(5):1673-1678. doi: 10.1039/C9TC06304H
    [86] LIU Z, WANG W, TAN J, et al. Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2020,8(21):7170-7180. doi: 10.1039/D0TC01249A
    [87] SHARMA M, SINGH M P, SRIVASTAVA C, et al. Poly(vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations[J]. ACS Applied Materials & Interfaces,2014,6(23):21151-21160. doi: 10.1021/am506042a
    [88] LU S, LI B, MA K, et al. Flexible MXene/EPDM rubber with excellent thermal conductivity and electromagnetic interference performance[J]. Applied Physics A,2020,126(7):513. doi: 10.1007/s00339-020-03675-3
    [89] WEI H, WANG M, ZHENG W, et al. 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties[J]. Ceramics International,2020,46(5):6199-6204. doi: 10.1016/j.ceramint.2019.11.087
    [90] LEI C, ZHANG Y, LIU D, et al. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications[J]. ACS Applied Materials & Interfaces,2020,12(23):26485-26495. doi: 10.1021/acsami.0c07387
    [91] FLAUZINO N W P, MARIANO M, DA SILVA I S V, et al. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls[J]. Carbohydr Polymers,2016,153:143-152. doi: 10.1016/j.carbpol.2016.07.073
    [92] KANG H, TANG Y, YAO L, et al. Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing[J]. Composites Part B: Engineering,2017,112:1-7. doi: 10.1016/j.compositesb.2016.12.035
    [93] YANG J-S, XIE Y-J, HE W. Research progress on chemical modification of alginate: A review[J]. Carbohydrate Polymers,2011,84(1):33-39. doi: 10.1016/j.carbpol.2010.11.048
    [94] SHAHZ AD F , ALHABEB M , HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137-1140.
    [95] ZHOU Z, LIU J, ZHANG X, et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding[J]. Advanced Materials Interfaces,2019,6(6):1802040. doi: 10.1002/admi.201802040
    [96] ZHANG L Q, YANG S G, LI L, et al. Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2018,10(46):40156-40167.
    [97] HUANG H D, LIU C Y, ZHOU D, et al. Cellulose composite aerogel for highly efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry A,2015,3(9):4983-4991. doi: 10.1039/C4TA05998K
    [98] HU D, HUANG X, LI S, et al. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding[J]. Composites Science and Technology,2020,188:107995. doi: 10.1016/j.compscitech.2020.107995
    [99] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997
    [100] HE P, CAO M S, SHU J C, et al. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy[J]. ACS Applied Materials & Interfaces,2019,11(13):12535-12543. doi: 10.1021/acsami.9b00593
    [101] HE P, CAO M S, CAI Y Z, et al. Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding[J]. Carbon,2020,157:80-89. doi: 10.1016/j.carbon.2019.10.009
    [102] IWATAKE A, NOGI M, YANO H. Cellulose nanofiber-reinforced polylactic acid[J]. Composites Science and Technology,2008,68(9):2103-2106. doi: 10.1016/j.compscitech.2008.03.006
    [103] ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale,2011,3(1):71-85. doi: 10.1039/C0NR00583E
    [104] ZHOU B, ZHANG Z, LI Y, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces,2020,12(4):4895-4905. doi: 10.1021/acsami.9b19768
    [105] ZHAN Z, SONG Q, ZHOU Z, et al. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2019,7(32):9820-9829. doi: 10.1039/C9TC03309B
    [106] HAN M, YIN X, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band[J]. ACS Applied Materials & Interfaces,2016,8(32):21011-21019. doi: 10.1021/acsami.6b06455
    [107] QING Y, ZHOU W, LUO F, et al. Titanium carbide (MXene) nanosheets as promising microwave absorbers[J]. Ceramics International,2016,42(14):16412-16416. doi: 10.1016/j.ceramint.2016.07.150
    [108] LIU X, WU J, HE J, et al. Electromagnetic interference shielding effectiveness of titanium carbide sheets[J]. Materials Letters,2017,205:261-263. doi: 10.1016/j.matlet.2017.06.101
    [109] KUMAR S, ARTI, KUMAR P, et al. Steady microwave absorption behavior of two-dimensional metal carbide MXene and polyaniline composite in X-band[J]. Journal of Magnetism and Magnetic Materials,2019,488:165364. doi: 10.1016/j.jmmm.2019.165364
    [110] LIU F, LI Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding[J]. Carbohydr Polymers,2020,243:116467. doi: 10.1016/j.carbpol.2020.116467
    [111] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society,2019,141(11):4730-4737. doi: 10.1021/jacs.9b00574
    [112] LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19(8):894-899. doi: 10.1038/s41563-020-0657-0
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  2119
  • HTML全文浏览量:  622
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 录用日期:  2021-04-01
  • 网络出版日期:  2021-04-08
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回