留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉煤灰空心球/Al复合泡沫材料准静态力学性能及本构模型

张博一 高金涛 王理 张箭 王伟 武高辉

张博一, 高金涛, 王理, 等. 粉煤灰空心球/Al复合泡沫材料准静态力学性能及本构模型[J]. 复合材料学报, 2021, 38(8): 2655-2665. doi: 10.13801/j.cnki.fhclxb.20201116.003
引用本文: 张博一, 高金涛, 王理, 等. 粉煤灰空心球/Al复合泡沫材料准静态力学性能及本构模型[J]. 复合材料学报, 2021, 38(8): 2655-2665. doi: 10.13801/j.cnki.fhclxb.20201116.003
ZHANG Boyi, GAO Jintao, WANG Li, et al. Quasi-static mechanical properties and constitutive model of fly ash cenosphere/aluminum syntactic foam[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2655-2665. doi: 10.13801/j.cnki.fhclxb.20201116.003
Citation: ZHANG Boyi, GAO Jintao, WANG Li, et al. Quasi-static mechanical properties and constitutive model of fly ash cenosphere/aluminum syntactic foam[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2655-2665. doi: 10.13801/j.cnki.fhclxb.20201116.003

粉煤灰空心球/Al复合泡沫材料准静态力学性能及本构模型

doi: 10.13801/j.cnki.fhclxb.20201116.003
基金项目: 国家自然科学基金(51578201;51778196)
详细信息
    通讯作者:

    张博一,博士,副教授,博士生导师,研究方向为能源工程结构抗爆抗冲击、吸能材料及结构动态力学性能  E-mail:zhangby@hit.edu.cn

  • 中图分类号: TB331;TB333

Quasi-static mechanical properties and constitutive model of fly ash cenosphere/aluminum syntactic foam

  • 摘要: 为研究粉煤灰空心球/Al(Fly ash cenosphere/aluminum syntactic foam,FAC/Al)复合泡沫材料静力性能,采用万能试验机对铝基复合泡沫材料进行了准静态轴向压缩性能试验,考察了不同空心球平均粒径(分别为150、200和300 μm)对铝基复合泡沫材料变形失效模式及力学性能的影响,并获取了具有不同空心球粒径的复合材料在准静态下的应力-应变曲线,在此基础上分析了空心球粒径大小对复合材料能量吸收性能的影响。试验结果表明,在准静态荷载作用下,随着空心球粒径的增大,复合材料的压缩屈服强度、吸能能力及理想吸能效率有着明显的降低。此外,在获得的应力-应变曲线基础上,采用最小二乘法拟合得到了铝基复合泡沫在准静态荷载作用下的本构方程,并对其进行了验证,结果表明该方程具有较好的拟合度。

     

  • 图  1  粉煤灰空心球(FAC)/Al基复合泡沫的设计思路[23]

    Figure  1.  Design for fly ash cenosphere (FAC)/aluminum syntactic foam

    图  2  FAC)Al复合泡沫制作流程图[23]

    Figure  2.  Fabricated technics of FAC/Al syntactic foam[23]

    图  3  FAC/Al基复合泡沫试样

    Figure  3.  Sample of FAC/Al syntactic foam

    图  4  FAC/Al基复合泡沫的SEM图像

    Figure  4.  SEM image of FAC/Al syntactic foam

    图  5  所有FAC/Al复合泡沫试件的最终形态

    Figure  5.  Final forms of all FAC/Al syntactic foam

    图  6  试验前后FAC/Al复合泡沫的金相显微图像

    Figure  6.  Metallographic microscopic images of FAC/Al composite foams ((a) Before test; (b) After test)

    图  7  P-R001-L15-200 FAC/Al复合泡沫试件在应变率10−3s−1下的应力-应变曲线 (a) 和变形过程 (b)

    Figure  7.  Stress-strain curve (a) and deformation process (b) of FAC/Al syntactic foam specimen P-R001-L15-200 under the strain rate of 10−3s−1

    图  8  15 mm高FAC/Al复合泡沫试件在应变率10−2 s−1下的应力-应变曲线

    Figure  8.  Stress-strain curves of the FAC/Al syntactic foam specimens with height of 15 mm under the strain rate of 10−2 s−1

    图  10  5 mm高FAC/Al复合泡沫试件在应变率10−2 s−1下的应力-应变曲线

    Figure  10.  Stress-strain curves of the FAC/Al syntactic foam specimens with height of 5 mm under the strain rate of 10−2 s−1

    图  11  不同应变率下15 mm高、200 μm粒径FAC/Al复合泡沫试件的应力-应变曲线

    Figure  11.  Stress-strain curves of the FAC/Al syntactic foam specimens with 200 μm cenosphere in height of 15 mm under different strain rates

    图  12  15 mm高、不同FAC粒径的FAC/Al复合泡沫试件平均弹性模量与应变率的关系

    Figure  12.  Relationship between the average elastic modulus and strain rate of the FAC/Al syntactic foam specimens with different cenospheres in height of 15 mm

    图  13  15 mm高、不同FAV粒径FAC/Al复合泡沫吸能能力-应变曲线

    Figure  13.  Energy absorption ability-strain curves of the FAC/Al syntactic foam specimens with different cenospheres in height of 15 mm

    图  14  15 mm高、不同FAC粒径FAC/Al复合泡沫吸能效率-应力曲线

    Figure  14.  Energy absorption efficiency-stress curves of the FAC/AL specimens with different cenospheres in height of 15 mm

    图  15  15 mm高、不同FAC粒径FAC/Al复合泡沫理想吸能效率-应力曲线

    Figure  15.  Ideal energy absorption efficiency-stress curves of the FAC/Al syntactic foam specimens with different cenospheres in height of 15 mm

    图  9  15 mm FAC/Al复合泡沫试件在应变率10−1 s−1下的应力-应变曲线

    Figure  9.  Stress-strain curves of the FAC/Al syntactic foam specimens with height of 15 mm under the strain rate of 10−1 s−1

    图  16  FAC/Al复合泡沫试件P-R001-L15-200和P-R01-L15-200的试验与拟合曲线对比

    Figure  16.  Test curve and fitting curve of the FAC/Al syntactic foam specimen P-R001-L15-200 and P-R01-L15-200

    图  17  FAC/Al复合泡沫密度影响函数$G(\rho )$与密度的关系

    Figure  17.  Relationship between G(ρ) and density of FAC/Al syntactic foam

    图  18  FAC/Al复合泡沫试件P-R01-L15-300和P-R1-L15-150的试验曲线与拟合曲线对比

    Figure  18.  Test and fitting curves of the FAC/Al syntactic foam specimen P-R01-L15-300 and P-R1-L15-150

    表  1  FAC/Al复合泡沫试件几何参数及加载应变率

    Table  1.   Geometric parameters and loading strain rates of FAC/Al syntactic foam specimens

    GroupFoamLength/mmCenosphere particle size/μmStrain rate/s−1Diameter/mm
    Group1 P-R001-L15-150 15 150 0.001 10
    P-R001-L15-200 15 200 0.001 10
    P-R001-L15-300 15 300 0.001 10
    Group2 P-R01-L15-150 15 150 0.01 10
    P-R01-L15-200 15 200 0.01 10
    P-R01-L15-300 15 300 0.01 10
    Group3 P-R1-L15-150 15 150 0.1 10
    P-R1-L15-200 15 200 0.1 10
    P-R1-L15-300 15 300 0.1 10
    Group4 P-R01-L5-150 5 150 0.01 10
    P-R01-L5-200 5 200 0.01 10
    P-R01-L5-300 5 300 0.01 10
    Notes: P—Compression; R001, R01 and R1—Strain rate are 0.001, 0.01 and 0.1, respectively; L15 and L5—Length are 15 and 5 mm, respectively; 150, 200 and 300—Cenosphere particle size.
    下载: 导出CSV

    表  2  FAC/Al复合泡沫应变相关形状函数的拟合参数Ai

    Table  2.   Fitting parameters of strain dependent shape function Ai of FAC/Al syntactic foam specimens

    A1A2A3A4A5A6A7A8A9A10
    2 199.66 −21 182.08 −265 269.12 6.70×106 −5.71×107 2.62×108 −7.13×108 1.15×109 −1.02×109 3.83×108
    下载: 导出CSV
  • [1] GIBSON L. Mechanical behavior of metallic foams[J]. Annual Review of Materials Science,2000,30:191-227. doi: 10.1146/annurev.matsci.30.1.191
    [2] GARAI F, BÉRES G, WELTSCH Z. Development of tubes filled with aluminum foams for lightweight vehicle manufacturing[J]. Materials Science and Engineering: A,2020,790:139743. doi: 10.1016/j.msea.2020.139743
    [3] YANG D, ZHANG Z, CHEN X, et al. Quasi-static compression deformation and energy absorption characteristics of basalt fiber-containing closed-cell aluminum foam[J]. Metals,2020,10(7):921. doi: 10.3390/met10070921
    [4] KUMAR R, JAIN H, SRIRAM S, et al. Lightweight open cell aluminum foam for superior mechanical and electromagnetic interference shielding properties[J]. Materials Chemistry and Physics,2020,240:122274. doi: 10.1016/j.matchemphys.2019.122274
    [5] ZHANG J, CHEN L, WU H, et al. Experimental and microscopic investigation of double-layer aluminum foam under impact loading[J]. Composite Structures,2020,241:110859. doi: 10.1016/j.compstruct.2019.04.031
    [6] 姚卓, 王国斌. 泡沫铝基复合防撞技术在公路桥墩中的应用[J]. 石家庄铁道大学学报(自然科学版), 2017(S1):127-131.

    YAO Zhuo, WANG Guobin. Application of foam aluminum base composite anti-collision technology in highway piers[J]. Journal of Shijiazhuang Tiedao University(Natural Science Edition),2017(S1):127-131(in Chinese).
    [7] HUO X, LIU H, LUO Q, et al. On low-velocity impact response of foam-core sandwich panels[J]. International Journal of Mechanical Sciences,2020(181):105681.
    [8] 窦作勇, 姜龙涛, 武高辉. 新型低成本空心球/Al多孔材料的冲击吸能特性[C]. 中国力学学会. 第十五届全国复合材料学术会议论文集(上册). 中国力学学会, 2008: 163-166.

    DOU Zuoyong, JIANG Longtao, WU Gaohui. Impact energy absorption characteristics of new type low cost cenosphere/Al porous materials[C]. The Chinese Society of Theoretical and Applied Mechanics. Proceedings of The 15th National Conference on Composite Materials(Volume 1). The Chinese Society of Theoretical and Applied Mechanics, 2008: 163-166(in Chinese).
    [9] 李硕. 铝基复合泡沫填充圆钢管静态力学及吸能性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    LI Shuo. Study on static mechanical properties and energy absorption performance of aluminum matrix composite foam-filled circular tube[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [10] DOU Z Y, JIANG L T, WU G H, et al. High strain rate compression of cenosphere-pure aluminum syntactic foams[J]. Scripta Materialia,2007,57(10):945-948. doi: 10.1016/j.scriptamat.2007.07.024
    [11] WU G H, DOU Z Y, SUN D L, et al. Compression behaviors of cenosphere-pure aluminum syntactic foams[J]. Scripta Materialia,2007,56(3):221-224. doi: 10.1016/j.scriptamat.2006.10.008
    [12] 武高辉, 姜龙涛. 含微小封闭孔洞的泡沫铝: 中国, 03200299.8[P]. 2004-05-26.

    WU Gaohui, JIANG Longtao. Aluminum foam with tiny closed holes: China, 03200299.8[P]. 2004-05-26(in Chinese).
    [13] 武高辉, 姜龙涛. 一种高强轻质泡沫铝复合材料及其制备方法: 中国, 03100180.7[P]. 2003-06-18.

    WU Gaohui, JIANG Longtao. The cenosphere-aluminum syntactic foam with high strength and lightweight and its fabricating method: China, 03100180.7[P]. 2003-06-18(in Chinese).
    [14] 王瑞, 林振荣, 卢玉松, 等. 爆炸荷载作用下泡沫铝复合材料数值模拟[J]. 塑性工程学报, 2010, 17(6):127-130.

    WANG Rui, LIN Zhenrong, LU Yusong, et al. Numerical simulation of foam aluminum composite under explosion loading[J]. Journal of Plasticity Engineering,2010,17(6):127-130(in Chinese).
    [15] 丁珂. 冲击作用下铝基复合泡沫填充管动态力学及吸能性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    DING Ke. Study on dynamic mechanical properties and energy absorption performance of aluminum matrix compo-site foam-filled circular tube under impact[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [16] 张博一, 王伟, 武高辉. 空心微珠/Al复合材料的动态压缩力学性能和吸能特性[J]. 爆炸与冲击, 2014, 34(1):28-34. doi: 10.3969/j.issn.1001-1455.2014.01.006

    ZHANG Boyi, WANG Wei, WU Gaohui. Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam[J]. Explosion and Shock,2014,34(1):28-34(in Chinese). doi: 10.3969/j.issn.1001-1455.2014.01.006
    [17] ZHANG Q, LIN Y, CHI H, et al. Quasi-static and dynamic compression behavior of glass cenospheres/5A03 syntactic foam and its sandwich structure[J]. Composite Structures,2018,183:499-509. doi: 10.1016/j.compstruct.2017.05.024
    [18] 许庆彦, 陈玉勇, 李庆春. 多孔泡沫金属的研究现状[J]. 铸造设备研究, 1997(1):18-24, 55.

    XU Qingyan, CHEN Yuyong, LI Qingchun. Research status of porous foam metals[J]. Research on casting equipment,1997(1):18-24, 55(in Chinese).
    [19] 左孝青, 孙加林. 泡沫金属制备技术研究进展[J]. 材料科学与工程学报, 2004(3):452-456. doi: 10.3969/j.issn.1673-2812.2004.03.036

    ZUO Xiaoqing, SUN Jialin. Review on foam metal manufacture techniques[J]. Journal of materials science and Engineering,2004(3):452-456(in Chinese). doi: 10.3969/j.issn.1673-2812.2004.03.036
    [20] 胡时胜, 王悟, 潘艺, 等. 泡沫材料的应变率效应[J]. 爆炸与冲击, 2003(1):13-18. doi: 10.3321/j.issn:1001-1455.2003.01.003

    HU Shisheng, WANG Wu, PAN Yi, et al. Strain rate effect on the properties foam materials[J]. Explosion and Shock,2003(1):13-18(in Chinese). doi: 10.3321/j.issn:1001-1455.2003.01.003
    [21] 王曦, 虞吉林. 泡沫铝的单向力学行为[J]. 实验力学, 2001(4):438-443. doi: 10.3969/j.issn.1001-4888.2001.04.014

    WANG Xi, YU Jilin. Uniaxial mechanical behavior of aluminum foam[J]. Experimental Mechanics,2001(4):438-443(in Chinese). doi: 10.3969/j.issn.1001-4888.2001.04.014
    [22] 王二恒, 虞吉林, 王飞, 等. 泡沫铝材料准静态本构关系的理论和实验研究[J]. 力学学报, 2004(6):673-679. doi: 10.3321/j.issn:0459-1879.2004.06.005

    WANG Erheng, YU Jilin, WANG Fei, et al. Theoretical and experimental study on quasi-static constitutive relationship of aluminum foam[J]. Journal of Mechanics,2004(6):673-679(in Chinese). doi: 10.3321/j.issn:0459-1879.2004.06.005
    [23] 邹林池. 空心球/Al微孔材料的压缩变形行为和吸能性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    ZOU Linchi. Compressive deformation behavior and energy absorption property of cenospere/Al syntactic foam[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [24] JAMES A S, COLIN C F. Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading[J]. Polymer Engineering and Science,1992,32(16):1138-1146. doi: 10.1002/pen.760321611
    [25] 胡永乐, 王峰超, 胡时胜. 泡沫铝经验型动态本构模型及其在LS-DYNA中的实现[J]. 兵工学报, 2014, 35(2):46-50.

    HU Yongle, WANG Fengchao, HU Shisheng. An empirical dynamic constitutive model for aluminum foams and its implementation in LS-DYNA[J]. Journal of China Ordnance,2014,35(2):46-50(in Chinese).
    [26] 王婧. 强冲击载荷作用下多孔钛动态力学行为研究[D]. 北京: 北京理工大学, 2017.

    WANG Jing. Investigation on dynamic behavior of cellular titanium subjected to impact loading[D]. Beijing: Beijing Institute of Technology, 2017(in Chinese).
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  908
  • HTML全文浏览量:  406
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 录用日期:  2020-11-05
  • 网络出版日期:  2020-11-16
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回