留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳结构超疏水表面的浸润性及防冰性能

武壮壮 马国佳 崔向中 刘星

武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(0): 1-7
引用本文: 武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(0): 1-7
武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(0): 1-7
Citation: 武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(0): 1-7

微纳结构超疏水表面的浸润性及防冰性能

详细信息
    通讯作者:

    马国佳,博士,研究员,研究方向为微纳加工及仿生表面制备及工艺 E-mail:lemontree7678@163.com

  • 中图分类号: TB332

Wettability and anti-icing performance of micro-nano structure superhydrophobic surface

  • 摘要: 本文以Ti合金为基体材料,通过超快激光加工微结构并复合纳米SiO2/氟化聚氨酯涂料,获得了微纳结构的涂层表面,并与涂料喷涂获得的纳米涂层表面和未处理的Ti合金表面进行了对比分析研究。分别采用扫描电镜、超景深显微镜、接触角和冰结合力测量仪,研究分析了未处理Ti合金表面、纳米结构表面、微纳结构表面的表面形貌、疏水性、防覆冰性能。结果表明:具有微纳结构的涂层表面具有最佳的超疏水性,显示出158.9°的接触角,1.5°的滚动角;与未处理Ti合金表面、纳米结构表面相比,微纳结构表面冰结合力显著降低,表面冰结合强度约为410 kPa。
  • 图  1  未处理表面、纳米结构表面、微纳结构表面润湿关系

    Figure  1.  Wetting relationships of untreated surface, nanostructure surface, and micro-nanostructure surface

    图  2  方阵柱微结构示意图

    Figure  2.  Squarematrix column microstructure diagram

    图  3  冰结合力测试装置及测试试验图

    Figure  3.  Ice adhesion test device and test image

    图  4  Ti合金基体上的三种不同表面形貌:(a)方阵柱复合SiO2/氟化聚氨酯涂层形成微纳结构表面形貌,微结构由边长~100 μm,间距~210 μm,高度~50 μm的方形结构构成;(b)纳米结构(SiO2);(c)微纳结构表面的三维形貌图;(d)SiO2/氟化聚氨酯纳米结构涂层表面形貌;(e)纳米结构(SiO2);(f)未处理的Ti合金表面

    Figure  4.  Three different surface morphologies on the Ti alloy substrate: (a) the surface topography of the micro-nano structure formed by square matrix column and SiO2/fluorinated polyurethane coating,the microstructure consists of a square structure with a side length of ~100 μm, a pitch of ~210 μm and a height of ~50 μm; (b) nanostructure (SiO2); (c) three-dimensional topography of the surface of the micro-nanostructure; (d) the surface morphology of SiO2/fluorinated polyurethane nanostructured coating; (e) nanostructure (SiO2);(f) the untreated Ti alloy surface

    图  5  Ti合金基体上的三种表面接触角:方阵柱复合SiO2/氟化聚氨酯涂层构成的微纳结构表面、SiO2/氟化聚氨酯构成的纳米结构表面、未处理的Ti合金表面接触角(微纳结构表面(MN-)接触角为158.9°;纳米结构表面(N-)接触角为148.4°;未处理Ti合金表面(UT-)接触角为69.03°)

    Figure  5.  Three types of surface contact angle on Ti alloy substrate: contact angle of the micro-nano structure surface formed by square matrix column and SiO2/fluorinated polyurethane coating, the nanostructure surface formed by SiO2/fluorinated polyurethane coating, andthe untreated Tialloy surface.(The micro-nano structure surface (MN-) contact angle is 158.9°; the nanostructure surface (N-) contact angle is 148.4°; the untreated surface (UT-) contact angle is 69.03°)

    图  6  -10℃下Ti合金基体上三种表面冰结合强度:方阵柱复合SiO2/氟化聚氨酯涂层形成微纳结构表面、SiO2/氟化聚氨酯涂层纳米结构表面、未处理的Ti合金表面冰结合强度(同一工艺不同样品冰结合强度)

    Figure  6.  Three types of surface ice adhesion strength on Ti alloy substrate at -10℃:ice adhesion strengthof the micro-nano structure surface formed by square matrix column and SiO2/fluorinated polyurethane coating, the nanostructure surface formed by SiO2/fluorinated polyure- thane coating, and the untreated Tialloy surface (Ice adhesion strength of different samples with same process)

    图  7  −10℃ 下同一样品测量20次Ti合金基体上三种表面冰结合强度变化趋势 (方阵柱复合SiO2/氟化聚氨酯涂层构成的微纳结构表面、SiO2/氟化聚氨酯构成的纳米结构表面、未处理的Ti合金表面)

    Figure  7.  Trend of ice adhesion strength of three types of surface on Ti alloy substrate measured 20 times at −10℃(the micro-nano structure surface formed by square matrix column and SiO2/fluorinated polyurethane coating, the nanostructure surface formed by SiO2/fluorinated polyure- thane coating, and the surface of untreated Ti alloy)

  • [1] 陈凯, 王强, 夏祖西. 飞机超疏水表面的防冰性能研究进展[J]. 应用化工, 2016, 45(10):1969-1973.

    CHEN Kai, WANG Qiang, XIA Zuxi. Research progress of anti-icing performance of aircraft superhydrophobicsurface[J]. Journal of Applied Chemicals,2016,45(10):1969-1973(in Chinese).
    [2] 王冠, 张德远, 陈华伟. 飞机防冰--从传统到仿生的发展[J]. 工业技术创新, 2014, 1(2):241-250.

    WANG Guan, ZHANG Deyuan, CHEN Hua wei. Aircraft anti-icing developmentfrom tradi-tional to biomimetic[J]. IndustrialTechnologyInnovation,2014,1(2):241-250(in Chinese).
    [3] 马蕾, 王贤明, 宁亮. 飞机防冰涂料的研究进展[J]. 中国涂料, 2014, 29(1):11-14, 18. doi:  10.3969/j.issn.1006-2556.2014.01.004

    MA Lei, WANG Xianming, NING Liang. Research progress of aircraft anti-icing coatings[J]. China Paint,2014,29(1):11-14, 18(in Chinese). doi:  10.3969/j.issn.1006-2556.2014.01.004
    [4] 杨钦, 罗荘 竹, 谭生, 等. 超疏水自清洁涂层防结冰技术的研究进展[J]. 中国表面工程, 2016, 29(4):10-22. doi:  10.11933/j.issn.1007-9289.2016.04.002

    YANG Qin, LUO Yizhu, TAN Sheng, et al. Research progress of anti-icing technology for superhydrophobic self-cleaning coatings[J]. China Surface Engineering,2016,29(4):10-22(in Chinese). doi:  10.11933/j.issn.1007-9289.2016.04.002
    [5] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plantsurfaces[J]. Annalsof Botany,1997,79(6):667-677. doi:  10.1006/anbo.1997.0400
    [6] BHUSHAN B, JUNG Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science,2011,56(1):1-108. doi:  10.1016/j.pmatsci.2010.04.003
    [7] ZHANG Q, JIN B, WANG B, et al. Fabrication of a highly stable superhydrophobic surface with dual-scale structure and its antifrosting properties[J]. Industrial & Engineering Chemistry Research,2017,56(10):2754-2763.
    [8] 翟广坤, 李曙林, 陈素素, 等. 氟化改性硅树脂制备的超疏水涂层防覆冰性能[J]. 工程科学学报, 2018, 40(7):864-870.

    ZHAI Guangkun, LI Shulin, CHEN Susu, et al. Anti-icing performance of superhydrophobic coating prepared by fluorinated modified silicone resin[J]. Journal of Engineering Science,2018,40(7):864-870(in Chinese).
    [9] LATTHE S S, SUTAR R S, KODAG V S, et al. Selfcleaning superhydrophobic coatings: potential industrial applications[J]. Progress in Organic Coatings,2019,128:52-58. doi:  10.1016/j.porgcoat.2018.12.008
    [10] 刘建峰, 肖新颜. 溶胶-凝胶法超疏水含氟硅聚氨酯丙烯酸酯/SiO2杂化涂层的制备[J]. 高分子材料科学与工程, 2014, 30(6):130-135.

    LIU Jianfeng, XIAO Xinyan. Preparation of superhydrophobic fluorinated silicone urethane acrylate/SiO2 hybrid coating by sol-gel method[J]. Polymer Science and Engineering,2014,30(6):130-135(in Chinese).
    [11] WANG S, FENG L, JIANG L. One-step solutionimmersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Advanced Materials,2006,18(6):767-770. doi:  10.1002/adma.200501794
    [12] LIN Feng, LI Shuhong, LI Huanjun, et al. Superhydrophobic surface of aligned polyacry-lonitrile nanofibers[J]. Communications and Control Engineering,2002,41(7):1221-1223.
    [13] MA M, HILL R M. Superhydrophobic surfaces[J]. Current Opinion in Colloid & Interface Science,2006,11(4):193-202.
    [14] EBERT D, BHUSHAN B. Durable lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles[J]. Journal of Colloid and Interface Science,2012,368(1):584-591. doi:  10.1016/j.jcis.2011.09.049
    [15] BAKE A, MERAH N, MATIN A, et al. Preparation of transparent and robust superhydrophobic surfaces for self-cleaning applications[J]. Progress in Organic Coatings,2018,122:170-179. doi:  10.1016/j.porgcoat.2018.05.018
    [16] 马国佳, 刘星, 张伟, 等. 超疏水仿生表面制造及其应用[J]. 稀有金属材料与工程, 2018, 47(6):1866-1871.

    MA Guojia, LIU Xing, ZHANG Wei, et al. Fabrication and application of superhydrophobic bionic surface[J]. Rare Metal Materials and Engineering,2018,47(6):1866-1871(in Chinese).
    [17] DARMANIN T, GIVENCHY E T D, AMIGONI S, et al. Superhydrophobic surfaces by electrochemical processes[J]. Advanced Materials,2013,25(10):1378-1394. doi:  10.1002/adma.201204300
    [18] 郗金明. 超疏水_超双疏材料的制备与研究[D]. 北京: 中国科学院化学研究所, 2008.

    XI Jinming. Preparation and research of superhydrophobic_super double sparse materials[D]. Beijing: Institute of Chemistry, Chinese Academy of Sciences, 2008(in Chinese).
    [19] 黄建业. 仿生超疏水表面的制备_疏水稳定性与应用研究[D]. 西安: 西北工业大学, 2014.

    HUANG Jianye. Preparation of bionic superhy- drophobicsurface_research on hydrophobic stability and application[D]. Xi'an: Northwestern Polytechnical University, 2014(in Chinese).
    [20] 王强峰. 超浸润表面的制备及其防覆冰性能与机理的研究[D]. 杭州: 浙江大学, 2018.

    WANG Qiangfeng. Preparation of super-wetting surface and its anti-icing performance and mechanism[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [21] FARHADI S, FARZANEH M, KULINICH SA. Anti-icing performance of superhydrophobic surfaces[J]. AppliedSurfaceScience,2011,257:6264-6269.
    [22] KULINICH S A, FARZANEH M. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces[J]. Langmuir,2009,25(16):8854-8856. doi:  10.1021/la901439c
    [23] HAO Pengfei, LV Cunjing, ZHANG Xiwen. Freezing of sessile water droplets on surfaces with various roughness and wettability[J]. Applied Physics Letters,2014,16(104):1-5.
    [24] 杨钦. 工程实用性超疏水自清洁涂层防结冰行为及机理研究[D]. 重庆: 中国科学院大学, 2017.

    Yang Qin. Anti-icing behavior and mechanism of superhydrophobic self-cleaning coatings for engineering applications[D]. Chongqing: University of Chinese Academy of Sciences, 2017(in Chinese).
    [25] SCHUTZIUS T M, JUNG S, MAITRA T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces[J]. Nature,2015,527(7576):82-85. doi:  10.1038/nature15738
  • [1] 杜婷婷, 叶云霞, 刘远方, 李浩楠, 任旭东, 符永宏.  纳秒激光调控CFRP表面润湿性及其对胶接性能的影响, 复合材料学报. 2020, 37(): 1-11.
    [2] 钱晓明, 魏楚, 钱幺, 刘永胜, 王立晶.  空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能, 复合材料学报. 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001
    [3] 段瑛涛, 武肖鹏, 王智文, 敬敏, 栗娜, 刘强, 宁慧铭, 胡宁.  碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能, 复合材料学报. 2020, 37(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20200215.002
    [4] 杨德庆, 钟山.  零泊松比超材料设计的多评价点功能基元拓扑优化方法, 复合材料学报. 2020, 37(12): 1-13. doi: 10.13801/j.cnki.fhclxb.20200306.001
    [5] 韩永森, 孙健, 张昕, 郭文敏, 李忠华.  微纳米SiC/环氧树脂复合材料的界面和非线性电导特性, 复合材料学报. 2020, 37(7): 1562-1570. doi: 10.13801/j.cnki.fhclxb.20191120.002
    [6] 周春苹, 刘付超, 周长聪, 李兴德.  石英纤维/环氧树脂复合材料结构静强度的可靠度计算及全局灵敏度分析, 复合材料学报. 2020, 37(7): 1611-1618. doi: 10.13801/j.cnki.fhclxb.20190930.002
    [7] 杜春燕, 黄树涛, 于晓琳, 王全兆, 赵晖.  SiCp/Al复合材料微弧氧化膜的组织结构及性能, 复合材料学报. 2020, 37(8): 1960-1968. doi: 10.13801/j.cnki.fhclxb.20191223.001
    [8] 陈嘉磊, 刘琦, 胡亚一, 沈周元, 陈秀玲, 周先波.  纳米微球NH2—Fe3O4@聚乙二醇@ZnO的制备及其光催化性能, 复合材料学报. 2020, 37(7): 1639-1648. doi: 10.13801/j.cnki.fhclxb.20191107.001
    [9] 欧华杰, 陈港, 朱朋辉, 魏渊, 李方.  纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200306.003
    [10] 刘秀玉, 张冰, 韩祥祥, 刘亚辉, 赵石旭, 唐刚.  空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能, 复合材料学报. 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
    [11] 陈宇飞, 武耘仲, 代国庆, 李治国, 滕成君, 崔巍巍.  SiO2包覆石墨烯/双马来酰亚胺复合材料的表征及性能, 复合材料学报. 2020, 37(5): 1015-1023. doi: 10.13801/j.cnki.fhclxb.20190911.001
    [12] 占红星, 芦刚, 严青松, 查军辉, 罗凌.  预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响, 复合材料学报. 2020, 37(): 1-6.
    [13] 梁晓蕾, 刘创华, 米欣, 朱伟东, 周强, 肖强.  SiO2或TiO2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能, 复合材料学报. 2020, 37(8): 1832-1840. doi: 10.13801/j.cnki.fhclxb.20191206.003
    [14] 周茜, 张瑶, 陈蓉, 沈佳斌, 郭少云.  SiO2表面改性对高填充SiO2/聚四氟乙烯复合薄膜性能的影响, 复合材料学报. 2020, 37(9): 2144-2151. doi: 10.13801/j.cnki.fhclxb.20191219.002
    [15] 李传习, 李游, 高有为, 胡正, 刘一鸣.  纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响, 复合材料学报. 2020, 37(10): 1-17. doi: 10.13801/j.cnki.fhclxb.20200319.001
    [16] 田庆丰, 唐源, 刘亚兰, 张春华, 丁涛, 李小红, 张治军.  表面功能化纳米SiO2的制备及其在溶液聚合丁苯橡胶-顺丁橡胶中的应用, 复合材料学报. 2020, 37(7): 1703-1712. doi: 10.13801/j.cnki.fhclxb.20191113.002
    [17] 汪继承, 雷中秋, 王振, 曹志海, 戚栋明, 黄骅隽.  硅烷偶联剂MPS对SiO2-聚丙烯酸酯复合微球接枝交联结构及剪切取向能力的影响, 复合材料学报. 2020, 37(5): 1096-1105. doi: 10.13801/j.cnki.fhclxb.20190719.001
    [18] 赵莉, 杜蘅, 刘虎, 龚䶮, 李昕, 陈彦锟, 吴燕.  纳米SiO2微球在PMMA凝胶聚合物电解质中的尺寸效应及其在全固态电致变色器件中的应用, 复合材料学报. 2020, 37(): 1-10.
    [19] 高顺, 郭正虹.  纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制, 复合材料学报. 2020, 37(11): 1-11.
    [20] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
  • 加载中
计量
  • 文章访问数:  179
  • HTML全文浏览量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 录用日期:  2020-02-28

目录

    /

    返回文章
    返回