留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯亚胺改性磁性酵母复合材料去除铀(VI)的性能

伍随意 李仕友 胡俊毅 贺俊钦 王国华 荣丽杉 金远远

伍随意, 李仕友, 胡俊毅, 等. 聚乙烯亚胺改性磁性酵母复合材料去除铀(VI)的性能[J]. 复合材料学报, 2021, 38(9): 3073-3083. doi: 10.13801/j.cnki.fhclxb.20201112.002
引用本文: 伍随意, 李仕友, 胡俊毅, 等. 聚乙烯亚胺改性磁性酵母复合材料去除铀(VI)的性能[J]. 复合材料学报, 2021, 38(9): 3073-3083. doi: 10.13801/j.cnki.fhclxb.20201112.002
WU Suiyi, LI Shiyou, HU Junyi, et al. Adsorption properties of polyethyleneimine modified magnetic yeast composites for uranium (VI)[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3073-3083. doi: 10.13801/j.cnki.fhclxb.20201112.002
Citation: WU Suiyi, LI Shiyou, HU Junyi, et al. Adsorption properties of polyethyleneimine modified magnetic yeast composites for uranium (VI)[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3073-3083. doi: 10.13801/j.cnki.fhclxb.20201112.002

聚乙烯亚胺改性磁性酵母复合材料去除铀(VI)的性能

doi: 10.13801/j.cnki.fhclxb.20201112.002
基金项目: 国家自然科学基金 (51904155);2020 年度湖南省大学生创新创业训练计划项目(S202010555118)
详细信息
    通讯作者:

    李仕友,博士,副教授,硕士生导师,研究方向为环境污染治理与资源化  E-mail:lsy730723@163.com

  • 中图分类号: TB3333

Adsorption properties of polyethyleneimine modified magnetic yeast composites for uranium (VI)

  • 摘要: 为了高效便捷地处理放射性废水,制备了聚乙烯亚胺(PEI)改性磁性酵母(MY)复合生物材料(MY@SiO2-PEI),并将其用于铀(VI)的去除。采用SEM、FTIR、Zeta电位及XPS对材料进行表征,运用Visual MINTEQ模拟不同条件下U(VI)形态分布,通过研究不同溶液pH、温度、反应时间、离子强度,阴离子(CO32−、PO43−)及不同U(VI)初始质量浓度等方面,考察不同因素对MY@SiO2-PEI吸附U(VI)的性能影响,并对MY@SiO2-PEI的循环利用能力进行研究。结果表明,MY@SiO2-PEI对U(VI)的吸附表现出强pH依赖性,离子强度对吸附效果无显著干扰,说明反应主要受表面络合作用控制。FTIR、XPS及Zeta电位分析发现促使U(VI)吸附的主要因素是材料表面不同官能团(N=C、NH(NH2)、C—N=C)与U(VI)的络合作用及静电吸引作用。MY@SiO2-PEI最大吸附量可达173.99 mg/g,且吸附在20 min就可达到吸附平衡。准二级动力学和Langmuir等温方程能很好的拟合此吸附过程,且热力学表明吸附过程是自发吸热过程。MY@SiO2-PEI材料的合成方法简便,去除效果好,再生性佳,是一种很有前途的环境污染治理中放射性核素的吸附剂。

     

  • 图  1  酵母 (a)、MY@SiO2-Cl (b) 及MY@SiO2-聚乙烯亚胺(PEI) (c) 的SEM图像;MY@SiO2-Cl (d) 及MY@SiO2-PEI (e) 的EDS能谱图

    Figure  1.  SEM images of yeast (a), MY@SiO2-Cl (b) and MY@SiO2-PEI (c); EDS of MY@SiO2-Cl (d) and MY@SiO2-PEI (e)

    图  2  酵母 (a)、MY@SiO2-Cl (b)、MY@SiO2-PEI (c) 及MY@SiO2-PEI吸附后 (d) 的FTIR图谱

    Figure  2.  FTIR spectra of Yeast (a), MY@SiO2-Cl (b), MY@SiO2-PEI (c) and MY@SiO2-PEI (d) after adsorption

    图  3  MY@SiO2-PEI吸附U(VI)前后的XPS图谱((a)全扫描光谱; (b)~(c) U4f和N1s的高分辨率光谱)

    Figure  3.  XPS spectra of MY@SiO2-PEI before and after U(VI) adsorption:((a) Full scan spectrum; (b)-(c) High-resolution spectra of U4f and N1s)

    图  4  (a) U(VI)形态分布随pH的变化图: C0(U)=10 mg/L,T=303 K,PCO2=103.58 atm (1 atm=1.0×105 Pa) ;(b) 不同pH值下MY@SiO2-PEI的Zeta电位变化图

    Figure  4.  (a) U(VI) speciation distribution as a function of pH in equilibrium with air (PCO2=103.58 atm (1 atm=1.0×105 Pa)): (b) C0(U)=10 mg/L, T=303 K; Zeta potential of MY@SiO2-PEI in solution

    图  5  pH值对MY@SiO2-PEI与MY@SiO2-Cl吸附U(VI)的影响 (a)、不同浓度NaNO3对U(VI)去除效果影响 (b)

    Figure  5.  Effect of pH on U(VI) adsorption by MY@SiO2-PEI and MY@SiO2-Cl (a), Effect of various concentrations NaNO3 on U(VI) adsorption (b)

    图  6  (a) Na2CO3和Na3PO4·12H2O对U(VI)去除效果的影响;(b) U(VI)形态分布随pH的变化曲线 (10 mg/L Na3PO4·12H2O,C0(U)=10 mg/L,T=303 K,PCO2=103.58atm (1 atm=1.0×105 Pa))

    Figure  6.  (a) Influence of Na2CO3 and Na3PO4·12H2O on U(VI) removal effect;(b) U(VI) species distribution as a function of pH in equilibrium with air (PCO2=103.58 atm (1 atm=1.0×105 Pa),10 mg/L Na3PO4·12H2O,C0(U)=10 mg/L,T=303 K)

    图  7  MY@SiO2-PEI对U(VI)的吸附曲线((a)准一级动力学拟合曲线;(b)准二级动力学拟合曲线;(c)颗粒内扩散模型拟合曲线)

    Figure  7.  Adsorptioncurve of U(VI) adsorption on MY@SiO2-PEI ((a) Pseudo-first order; (b) Pseudo-second-order; (c) Intra-particle diffusion)

    图  8  (a) MY@SiO2-PEI吸附 U(VI)的非线性等温模型拟合图;(b) lnK0与1/T的关系图

    Figure  8.  (a) Nonlinear isothermal model fitting diagram of U(VI) adsorption on MY@SiO2-PEI; (b) Relational graph of lnK0and 1/T

    图  9  MY@SiO2-PEI吸附解吸次数对U(VI)去除率的影响

    Figure  9.  Impact of adsorption-desorption times of MY@SiO2-PEI on removal rate of U(VI)

    表  1  MY@SiO2-PEI对U(VI)的吸附动力学拟合参数

    Table  1.   Kinetic parameters of U(VI) adsorption on MY@SiO2-PEI

    ρ0qe,expPseudo-first orderPseudo-second-orderIntra-particle diffusion
    $\mathit{ln}\left({q}_{{\rm{e}}}-{q}_{{\rm{t}}}\right)=ln{q}_{{\rm{e}}}-{k}_{1}t$$\dfrac{t}{ {q}_{t} }=\dfrac{1}{\left({k}_{2}\cdot {q}_{{\rm{e}}}^{2}\right)}+\dfrac{t}{ {q}_{{\rm{e}}} }$${q}_{t}={k}_{ {{\rm{d}}}_{{\rm{i}}}{\rm{f}}}·{e}^{0.5}+C$
    k1qe,calR2k2qe,calR2CKdifR2
    5 23.491 0.361 23.249 0.959 0.042 23.629 0.999 21.493 0.181 0.564
    10 44.868 0.032 44.996 0.923 0.022 45.065 0.999 43.658 0.102 0.604
    15 62.289 0.129 62.478 0.785 0.016 62.461 1.000 62.018 0.025 0.782
    Notes: C0Initial Cd(Ⅱ) ions concentration; qe.exp—Calculated amount of adsorption equilibrium; qe·cal—Actual amount of adsorption equilibrium; k1, k2 —First order rate constant and second order rate constant,respectively; Kdif —Particle diffusion constant.
    下载: 导出CSV

    表  2  MY@SiO2-PEI对U(VI)的吸附等温吸附模型拟合参数

    Table  2.   Simulation of isotherm models and corresponding parameters of U(VI) adsorption on MY@SiO2-PEI

    T/KLangmuir ${q}_{{\rm{e}}}=\dfrac{b{Q}_{\mathrm{m}\mathrm{a}\mathrm{x} }{C}_{{\rm{e}}} }{1+{b}{C}_{{\rm{e}}} }$Freundlich ${q_{\rm{e} } } = {K_{\rm{F}}}C_{\rm{e} }^{1/n}$
    Qmax/(mg·g−1)b/(L·mg−1)R2KF/(mg1-n·Ln·g−1)nR2
    283 103.541±0.820 0.287±0.01 0.999 31.336±3.619 2.761±0.362 0.932
    293 157.941±3.500 0.206±0.11 0.997 32.279±4.192 2.149±0.252 0.944
    303 173.990±7.094 0.311±0.03 0.991 47.095±3.813 2.189±0.202 0.965
    Notes: Qmax—Adsorption capacity per unit mass of the adsorbent; b—Langmuir coefficient related to the affinity of binding site; KF, n—Constants that are related to the adsorption capacity and the adsorption intensity, respectively.
    下载: 导出CSV

    表  3  MY@SiO2-PEI吸附U(VI)的热力学参数

    Table  3.   Thermodynamic parameterofU(VI) adsorption onMY@SiO2-PEI

    ΔG0/(kJ·mol−1)ΔH0/(kJ·mol−1)ΔS0/(J·mol−1·K−1)
    283 K303 K308 K
    −3.034 −3.264 −3.586 4.761 27.494
    Notes: ΔG0—Standard free energy change; ΔH0—Standard enthalpy change; ΔS0—Standard entropy change.
    下载: 导出CSV
  • [1] LI L, LIAO Q, CAO C, et al. 4-sulfonylcalix[6] Arene modified Fe3O4@aspergillus niger biosorbents for effective removal of uranium(VI) from aqueous solutions[J]. Journal for Nanoscience and Nanotechnology,2019,19(11):6978-6986. doi: 10.1166/jnn.2019.16602
    [2] CHEIRA M F, ATIA B M, KOURAIM M N. Uranium(VI) recovery from acidic leach liquor by ambersep 920U SO4 resin: Kinetic, equilibrium and thermodynamic studies[J]. Journal of Radiation Research and Applied Sciences,2019,10(4):307-319.
    [3] ZHU Z, PRANOLO Y, CHENG C Y. Uranium recovery from strong acidic solutions by solvent extraction with cyanex 923 and a modifier[J]. Minerals Engineering,2016,89:77-83. doi: 10.1016/j.mineng.2016.01.016
    [4] AYDIN F A, SOYLAK M. A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples[J]. Talanta,2007,73(1):134-141. doi: 10.1016/j.talanta.2007.03.007
    [5] REN X, WANG S, YANG S, et al. Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto mx-80 bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry,2009,283(1):253-259.
    [6] KONG L, RUAN Y, ZHENG Q, et al. Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater[J]. J Hazard Mater,2020,382:120784.
    [7] GISI S D, LOFRANO G, GRASSI M, et al. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review[J]. Sustainable Materials & Technologies,2016,9:10-40.
    [8] DENG S, TING Y-P. Characterization of pei-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II)[J]. Water Research,2005,39(10):2167-2177. doi: 10.1016/j.watres.2005.03.033
    [9] XIA Y, YAO Q, ZHANG W, et al. Comparative adsorption of methylene blue by magnetic baker's yeast and edtad-modified magnetic baker's yeast: Equilibrium and kinetic study[J]. Arabian Journal of Chemistry,2019,12(8):2448-2456. doi: 10.1016/j.arabjc.2015.03.010
    [10] ZHANG Y, ZHU J, ZHANG L, et al. Synthesis of edtad-modified magnetic baker's yeast biomass for Pb2+ and Cd2+adsorption[J]. Desalination,2011,278(1-3):42-49. doi: 10.1016/j.desal.2011.05.003
    [11] SUN Y, SHAO D, CHEN C, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environmental Science & Technology,2013,47(17):9904-9910. doi: 10.1021/es401174n
    [12] PANG Y, ZENG G, TANG L, et al. Pei-grafted magnetic porous powder for highly effective adsorption of heavy metal ions[J]. Desalination,2011,281:278-284. doi: 10.1016/j.desal.2011.08.001
    [13] WANG J, ZHENG S, SHAO Y, et al. Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal[J]. Journal of Colloid & Interface Science,2010,349(1):293-299.
    [14] ZHOU Y, PING T, MAITLO I, et al. Regional selective construction of nano-au on Fe3O4@SiO2@PEI nanoparticles by photoreduction[J]. Nanotechnology,2016,27(21):215301. doi: 10.1088/0957-4484/27/21/215301
    [15] OU H X, SONG Y J, LI L R, et al. Adsorption of Pb(II) by silica/yeast composites from aqueous solution: Kinetic and equilibrium studies[J]. Advanced Materials Research,2012,496:476-479. doi: 10.4028/www.scientific.net/AMR.496.476
    [16] XIE C, WEI S, CHEN D, et al. Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd(II) adsorption and detection[J]. RSC Advances,2019,9(41):23474-23483. doi: 10.1039/C9RA03859K
    [17] 曹春, 巨天珍, 陈兴鹏. CMC/P(AMPS-co-AA)水凝胶对Pb(II)的吸附动力学及吸附机理研究[J]. 环境化学, 2013(10):1909-1916.

    CAO C, JU T Z, CHEN X P. Adsorption kinetics and mechanism of Pb (Ⅱ) ion by CMC/P (AMPS-co-AA) hydrogel[J]. Environmental Chemistry,2013(10):1909-1916(in Chinese).
    [18] 卞维柏, 黄卫红, 欧红香, 等. MY@SiO2-PEI磁性复合生物材料对二元Ce3+/Sr2+混合离子的吸附性能研究[J]. 环境科学学报, 2014, 34(7):1716-1723.

    BIAN W B, HUANG W H, OU H X, et al. Adsorption of mixed Ce3+/Sr2+ in binary system onto MY@ SiO2-PEI magnetic composite biomaterial[J]. Acta Scientiae Circumstantiae,2014,34(7):1716-1723(in Chinese).
    [19] CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials,2015,27(13):2150-2176. doi: 10.1002/adma.201500033
    [20] CHEN Y, PAN R, RNHAIYAN L I, et al. Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters[J]. Environmental Science & Technology,2010,44(9):3508.
    [21] ZOU Y, WANG X, AI Y, et al. Correction: β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study[J]. Journal of Materials Chemistry A,2019,7:11539-11540.
    [22] SCHINALER M, HAWTHORNE F C, FREUND M S, et al. XPS spectra of uranyl minerals and synthetic uranyl compounds. I: The u 4f spectrum[J]. Geochimica et Cosmochimica Acta,2009,73(9):2471-2487. doi: 10.1016/j.gca.2008.10.042
    [23] A G D, C S X, A Z L, et al. Recovery of uranium (VI) from aqueous solutions by the polyethyleneimine-functionalized reduced graphene oxide/molybdenum disulfide composition aerogels[J]. Journal of the Taiwan Institute of Chemical Engineers,2020,106:198-205. doi: 10.1016/j.jtice.2019.09.029
    [24] MOREAU, JOHNW, DOUGLAS, et al. Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes[J]. Earth Science Reviews,2016,159:160-185. doi: 10.1016/j.earscirev.2016.05.010
    [25] FAN Q H, HAO L M, WANG C L, et al. The adsorption behavior of U(Ⅵ) on granite[J]. Environmental Science: Processes & Impacts Impacts,2014,16(3):534-541. doi: 10.1039/c3em00324h
    [26] ZHANG Y Z, GAO H, FAN Q, et al. Sorption of U(VI) onto a decarbonated calcareous soil[J]. Journal of Radioanalytical & Nuclear Chemistry,2011,288(2):395-404.
    [27] HUANG Z, LI Z, ZHENG L, et al. Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: Insights from batch experiments, IR, XPS, and exafs spectroscopy[J]. Chemical Engineering Journal,2017,328:1066-1074. doi: 10.1016/j.cej.2017.07.067
    [28] 段升霞. 低温等离子体改性纳米材料及其对含铀废水吸附性能研究[D]. 合肥: 中国科学技术大学, 2018.

    DUAN S X. Nonthermal plasma modified nanomaterials and their adsorptionon uranium containing waste water[D]. Hefei: University of Science and Technology of China, 2018(in Chinese).
    [29] LI J, CHENCl, ZHANGR, et al. Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique[J]. Science China Chemistry,2016,59(1):150-158. doi: 10.1007/s11426-015-5452-4
    [30] 毕玉玺, 凌辉, 唐振平, 等. 磁性介孔TiO2/氧化石墨烯复合材料的制备及其对U(Ⅵ)的吸附[J]. 复合材料学报, 2019, 36(09):2176-2186.

    BI Y X, LING H, TANG Z P, et al. Preparation of magnetic mesoporous TiO2/graphene oxide composites and their adsorption for U(Ⅵ)[J]. Acta Materiae Compositae Sinica,2019,36(09):2176-2186(in Chinese).
    [31] WANG P, YIN L, WANG J, et al. Superior immobilization of U(VI) and 243Am(III) on polyethyleneimine modified lamellar carbon nitride composite from water environment[J]. Chemical Engineering Journal,2017,326:863-874. doi: 10.1016/j.cej.2017.06.034
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1236
  • HTML全文浏览量:  426
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 录用日期:  2020-10-28
  • 网络出版日期:  2020-11-12
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回