留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能

李婷婷 李瑞雪 马政 杨安廷 焦晨璐 王健

李婷婷, 李瑞雪, 马政, 等. 纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能[J]. 复合材料学报, 2021, 38(12): 4273-4281. doi: 10.13801/j.cnki.fhclxb.20210310.002
引用本文: 李婷婷, 李瑞雪, 马政, 等. 纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能[J]. 复合材料学报, 2021, 38(12): 4273-4281. doi: 10.13801/j.cnki.fhclxb.20210310.002
LI Tingting, LI Ruixue, MA Zheng, et al. Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4273-4281. doi: 10.13801/j.cnki.fhclxb.20210310.002
Citation: LI Tingting, LI Ruixue, MA Zheng, et al. Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4273-4281. doi: 10.13801/j.cnki.fhclxb.20210310.002

纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能

doi: 10.13801/j.cnki.fhclxb.20210310.002
基金项目: 国家自然科学基金青年基金(51803004);安徽省高校自然科学研究项目(KJ2017A144);安徽农业大学人才项目(yj2018-18)
详细信息
    通讯作者:

    王健,硕士,副教授,硕士生导师,研究方向为生物质基复合材料 E-mail:silkwj@ahau.edu.cn

  • 中图分类号: TQ340.1

Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue

  • 摘要: 以微晶纤维素(Microcrystalline cellulose,MCC)和海藻酸钠(Sodium alginate,SA)为网络框架,海泡石(Sepiolite,SEP)为功能单元,采用悬浮液滴法构建纤维素-海藻酸钠-海泡石(MCC-SA-SEP)双网络多孔复合微球。通过SEM和TG对复合微球结构和热稳定性能进行表征,并研究该微球对亚甲基蓝(Methylene blue,MB)水溶液的吸附性能。结果表明,MCC-SA-SEP复合微球呈现三维网络多孔结构,且随着SEP含量的增加热稳定性逐渐提高。吸附结果显示MCC-SA-SEP符合准二级动力学模型和Langmuir等温线,对MB的饱和吸附容量高达333.3 mg/g。经过五次再生循环后,对MB吸附能力仍能维持85.4%,表明该多孔复合微球可以作为一种高效可再生的有机-无机复合吸附剂用于染料废水处理。

     

  • 图  1  不同SEP含量的MCC-SA-SEP复合微球的SEM图像

    Figure  1.  SEM images of MCC-SA-SEP beads with different SEP contents

    图  2  MCC、SA、SEP及MCC-SA-SEP复合微球的TG曲线

    Figure  2.  TG curves of MCC, SA, SEP and MCC-SA-SEP beads

    图  3  MCC-SA-SEP-21微球投入量和溶液pH对吸附性能的影响

    Figure  3.  Effect of MCC-SA-SEP-21 beads dosage and pH on the adsorption properties

    图  4  吸附时间对MCC-SA-SEP-21复合微球吸性能的影响

    Figure  4.  Effect of time on the adsorption performance of MCC-SA-SEP-21 beads

    图  5  MCC-SA-SEP-21复合微球吸附亚甲基蓝(MB)的动力学模型拟合曲线

    Figure  5.  Kinetic fitting curves of adsorption data of methylene blue (MB) onto MCC-SA-SEP-21 beads

    Qe—Equilibrium adsorption on MB; Qt—Adsorption time t corresponds to the adsorption capacity of MB

    图  6  不同初始浓度的MB对MCC-SA-SEP-21复合微球吸附性能的影响

    Figure  6.  Effect of initial concentrations of MB on the adsorption capacities of MCC-SA-SEP-21 beads

    图  7  MCC-SA-SEP-21复合微球的Langmuir等温吸附 (a) 和Freundlich等温吸附拟合曲线 (b)

    Figure  7.  Langmuir model fitting curve (a) and Freundlich model fitting curve (b) for MCC-SA-SEP-21 beads

    图  8  MCC-SA-SEP-21复合微对MB的吸附热力学拟合曲线

    Figure  8.  Thermodynamic fitting curve of MB onto MCC-SA-SEP-21 beads

    Kc—Adsorption equilibrium constant

    图  9  MCC-SA-SEP-21复合微球的再生性

    Figure  9.  Regeneration property of MCC-SA-SEP-21 beads

    表  1  不同SEP含量制备的微晶纤维素-海藻酸钠-海泡石(MCC-SA-SEP)复合微球

    Table  1.   Microcrystalline cellulose-sodium alginate-sepiolite (MCC-SA-SEP) composite beads prepared with various SEP contents

    MCC-SA content/gSEP content/gComposite bead
    2 0 MCC-SA-SEP-0
    2 0.5 MCC-SA-SEP-41
    2 1 MCC-SA-SEP-21
    2 2 MCC-SA-SEP-11
    下载: 导出CSV

    表  2  MCC-SA-SEP-21多孔复合微球吸附MB的动力学模型拟合参数

    Table  2.   Parameters of kinetic adsorption models for MB onto MCC-SA-SEP-21 beads

    AdsorbateQe(exp)/(mg·g−1)Pseudo-first-order modelPseudo-second-order model
    Q1e(cal)/(mg·g−1)k1/(min−1)R2Q2e(cal)/(mg·g−1)k2/(g·mg−1·min−1)R2
    MB 306.7 199.3 1.06×10−2 0.9855 322.6 9.1×10−5 0.9967
    Notes: k1, k2—Pseudo-first-order kinetic and Pseudo-second-order kinetic constants, respectively; Qe(cal)—Calculation amount of MB removed per unit mass of adsorbent; Qe(exp)—Experimental amount of MB removed per unit mass of adsorbent.
    下载: 导出CSV

    表  3  MCC-SA-SEP-21复合微球对MB的吸附等温拟合结果

    Table  3.   Isothermal parameters for the adsorption of MB onto MCC-SA-SEP-21 beads

    AdsorbateLangmuirFreundlich
    Qmax/(mg·g−1)kL/(L·mg−1)R2kF/(L·mg−1)nR2
    MB 333.3 0.147 0.9985 112 5 0.8949
    Notes: Qmax—Langmuir adsorption maximum; kL—Langmuir coefficient of distribution of the adsorption; kF—Freundlich coefficient of distribution of the adsorption; n—Freundlich constants related to adsorption strength.
    下载: 导出CSV

    表  4  同类纤维素复合微球吸附剂对MB的吸附容量对比

    Table  4.   Adsorption capacity ratio of similar cellulose composite beads adsorbents to MB

    AdsorbentAdsorption capacity/(mg·g−1)Reference
    SA/cellulose hydrogel beads 163.36 [26]
    Cellulose/diatomite composite aerogel beads 71.9424 [27]
    MCDBs 117.65 [14]
    CMC-AlG/GO hydrogels beads 78.5 [28]
    CNC-ALG 255.5 [29]
    CNC/MnO2/ALG beads 136.7 [30]
    MCC-SA-SEP 333.3 This work
    Notes: GO—Graphene oxide; MCDBs—Modified cellulose/diatomite beads; CMC—Carboxymethyl cellulose; CNC—Cellulose nanocrystal; ALG—Alginate.
    下载: 导出CSV

    表  5  MCC-SA-SEP-21复合微球对MB的吸附热力学参数

    Table  5.   Thermodynamic parameters for the adsorption of MB onto MCC-SA-SEP-21 beads

    T/KΔGo/(kJ·mol−1)ΔHo/(kJ·mol−1)ΔSo/(J·mol−1·K−1)
    303 −2.1 −22 −66.1
    308 −1.6
    313 −1.2
    318 −1
    323 −0.7
    Notes: ΔGo—Gibbs free energy variation of the adsorption process; ΔHo—Enthalpy change of the adsorption process; ΔSo—Entropy change of the adsorption process.
    下载: 导出CSV
  • [1] DAI L, ZHU W, HE L, et al. Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal[J]. Bioresource Technology,2018,267:510-516. doi: 10.1016/j.biortech.2018.07.090
    [2] SONG W, GAO B, XU X, et al. Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater[J]. Bioresource Technology,2016,210:123-130. doi: 10.1016/j.biortech.2016.01.078
    [3] HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environmental Management,2016,182:351-366.
    [4] GUPTA K C, KUMAR M N V. pH dependent hydrolysis and drug release behavior of chitosan/poly(ethylene glycol) polymer network microspheres[J]. Journal of Materials Science: Materials in Medicine,2001,12(9):753-759. doi: 10.1023/A:1017976014534
    [5] PARK S, OH Y, YUN J, et al. Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption[J]. Cellulose,2020,27(5):2757-2773. doi: 10.1007/s10570-020-02974-5
    [6] 曾丹林, 陈诗渊, 张崎, 等. 纤维素制备微球材料的研究进展[J]. 材料导报, 2015, 29(17):68-72.

    ZENG Danlin, CHEN Shiyuan, ZHANG Qi, et al. Research progress of microspheres materials synthesized from cellulose[J]. Materials Reports,2015,29(17):68-72(in Chinese).
    [7] ROY D, SEMSARILAR M, GUTHRIE J T, et al. Cellulose modification by polymer grafting: A review[J]. Chemical Society Reviews,2009,38(7):2026-2064.
    [8] WAN Y, CHEN X, XIONG G, et al. Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties[J]. Materials Express,2014,4(5):429-434. doi: 10.1166/mex.2014.1188
    [9] HU Z H, OMER A M, OUYANG X K, et al. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution[J]. International Journal of Biological Macromolecules,2018,108:149-157. doi: 10.1016/j.ijbiomac.2017.11.171
    [10] 李延庆, 刘志明, 程小凯, 等. 海藻酸钠/纤维素复合微球的制备及性能表征[J]. 林产化学与工业, 2019, 39(2):67-72.

    LI Yanqing, LIU Zhiming, CHENG Xiaokai, et al. Preparation and performance characterization of sodium alginate/cellulose composite microspheres[J]. Chemistry and Industry of Forest Products,2019,39(2):67-72(in Chinese).
    [11] TARTAGLIONE G, TABUANI D, CAMINO G, et al. PP and PBT composites filled with sepiolite: Morphology and thermal behaviour[J]. Composites Science and Technology,2008,68(2):451-460. doi: 10.1016/j.compscitech.2007.06.023
    [12] 张巍. 海泡石吸附混合污染物和气态污染物的研究进展[J]. 中国矿业, 2019, 28(2):126-132.

    ZHANG Wei. Research progress on sepiolite adsorption of mixed pollutants and gaseous pollutants[J]. China Mining Magazine,2019,28(2):126-132(in Chinese).
    [13] 杨欣洁. 新型磁性复合有机海泡石对双酚A的吸附试验研究[D]. 长沙: 湖南大学, 2015.

    YANG Xinjie. Adsorption of bisphenol A from aqueous solutions onto new magnetic composite organic sepiolite[D]. Changsha: Hunan University, 2015.
    [14] LI Y, XIAO H N, CHEN M D, et al. Absorbents based on maleic anhydride-modified cellulose fibers/diatomite for dye removal[J]. Journal of Materials Science,2014,46(19):6696-6704.
    [15] 李喜梅. 海藻酸盐纤维的热性能研究[D]. 青岛: 青岛大学, 2018.

    LI Ximei. Study on thermal properties of alginate fiber[D]. Qingdao: Qingdao University, 2018(in Chinese).
    [16] 宗鲁, 纪全, 谭利文, 等. 纤维素-钙纤维的制备及阻燃性能表征[J]. 高分子材料科学与工程, 2015, 31(2):176-180.

    ZONG Lu, JI Quan, TAN Liwen, et al. Preparation and flame retardant properties of cellulose-Ca fibers[J]. Polymer Materials Science & Engineering,2015,31(2):176-180(in Chinese).
    [17] ZHANG Y W, XU L, ZHAO L, et al. Radiation synthesis and Cr(VI) removal of cellulose microsphere adsorbent[J]. Carbohydrate Polymers,2012,88(3):931-938. doi: 10.1016/j.carbpol.2012.01.040
    [18] 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10):20-25.

    XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research,2019,40(10):20-25(in Chinese).
    [19] LIU L, GAO Z Y, SU X P, et al. Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent[J]. ACS Sustainable Chemistry & Engineering,2015,3(3):432-442.
    [20] TANZIFI M, YARAKI M T, KIADENHI A D, et al. Adsorption of amido black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigtion and artificial neural network modeling[J]. Journal of Colloid and Interface Science,2018,510:246-261. doi: 10.1016/j.jcis.2017.09.055
    [21] ZHOU Y, LIU X, XIANG Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling[J]. Bioresource Technology,2017(245):266-273.
    [22] GULAY B, BEGUM A, YAKUP A. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin[J]. Chemical Engineering Journal,2009,1(52):339-346.
    [23] JIAO C L, TAO J, XIONG J Q, et al. In situ synthesis of MnO2-loaded biocomposite based on microcrystalline cellulose for Pb2+ removal from wastewater[J]. Cellulose,2017,24(6):2591-2604. doi: 10.1007/s10570-017-1271-4
    [24] TAO J, XIONG J Q, JIAO C L, et al. Hybrid mesoporous silica based on hyperbranch-substrate nanonetwork as highly efficient adsorbent for water treatment[J]. ACS Sustainable Chemistry& Engineering,2016,4(1):60-68.
    [25] XU D, TAN X, CHEN C, et al. Removal of Pb(Ⅱ) from aqueous solution by oxidized multiwalled carbon nano-tubes[J]. Journal of Hazardous Materials,2008,154:407-416. doi: 10.1016/j.jhazmat.2007.10.059
    [26] 吴鹏, 刘志明. 海藻酸钠/纤维素水凝胶球的制备与应用[J]. 功能材料, 2015, 46(10):10144-10147, 10152.

    WU Peng, LIU Zhiming. Preparation and application of sodium alginate/cellulose hydrogel beads[J]. Journal of Functional Materials,2015,46(10):10144-10147, 10152(in Chinese).
    [27] 王佳楠, 羿颖, 边勇军, 等. 纤维素/硅藻土复合气凝胶球的制备及其吸附性能的研究[J]. 纤维素科学与技术, 2019, 27(1):49-56.

    WANG Jianan, YI Ying, BIAN Yongjun, et al. Preparation of cellulose/diatomite composite aerogel beads and its adsorption performance[J]. Journal of Cellulose Science and Technology,2019,27(1):49-56(in Chinese).
    [28] ALLOUSS D, ESSAMLALI Y, AMADINE O, et al. Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption kinetics, isotherm, thermodynamics and reusability studies[J]. RSC Advances,2019,9(65):37858-37869. doi: 10.1039/C9RA06450H
    [29] MOHAMMED N, GRISHKEWICH N, WAEIJEN H A, et al. Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads infixed bed columns[J]. Carbohydrate Polymers,2016,136:1194-1202. doi: 10.1016/j.carbpol.2015.09.099
    [30] DIAO H L, ZHANG Z J, LIU Y X, et al. Facile fabrication of carboxylated cellulose nanocrystal-MnO(2)beads for high-efficiency removal of methylene blue[J]. Cellulose,2020,27(12):7053-7066. doi: 10.1007/s10570-020-03260-0
    [31] KUMAR K V, KUMARAN A. Removal of methylene blue by mango seed kernel powder[J]. Biochemical Engineering Journal,2005,27(1):83-93. doi: 10.1016/j.bej.2005.08.004
    [32] KUBILAY S, GÜRKAN R, SAVRAN A, et al. Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite[J]. Adsorption,2007,13(1):41-51. doi: 10.1007/s10450-007-9003-y
    [33] STANCIU M C, NICHIFOR M. Adsorption of anionic dyes on a cationic amphiphilic dextran hydrogel: Equilibrium, kinetic, and thermodynamic studies[J]. Colloid and Polymer Science,2019,297(1):45-57. doi: 10.1007/s00396-018-4439-z
    [34] JIANG Y F, SUN H, YVES U J, et al. Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil[J]. Environmental Geochemistry and Health,2016,38(1):243-253. doi: 10.1007/s10653-015-9712-1
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  1381
  • HTML全文浏览量:  486
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 录用日期:  2021-02-22
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回