留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微胶囊化膨胀型阻燃剂与有机蒙脱土协效阻燃乙烯-醋酸乙烯共聚物性能

李茁实 程文华 董春 汪碧波 金志健 房权生 胡源

李茁实, 程文华, 董春, 等. 微胶囊化膨胀型阻燃剂与有机蒙脱土协效阻燃乙烯-醋酸乙烯共聚物性能[J]. 复合材料学报, 2021, 38(8): 2546-2553. doi: 10.13801/j.cnki.fhclxb.20201105.002
引用本文: 李茁实, 程文华, 董春, 等. 微胶囊化膨胀型阻燃剂与有机蒙脱土协效阻燃乙烯-醋酸乙烯共聚物性能[J]. 复合材料学报, 2021, 38(8): 2546-2553. doi: 10.13801/j.cnki.fhclxb.20201105.002
LI Zhuoshi, CHENG Wenhua, DONG Chun, et al. Synergistic properties of microencapsulated intumescent flame retardant-organically modified montmorillonite/ethylene-vinyl acetate copolymer composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2546-2553. doi: 10.13801/j.cnki.fhclxb.20201105.002
Citation: LI Zhuoshi, CHENG Wenhua, DONG Chun, et al. Synergistic properties of microencapsulated intumescent flame retardant-organically modified montmorillonite/ethylene-vinyl acetate copolymer composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2546-2553. doi: 10.13801/j.cnki.fhclxb.20201105.002

微胶囊化膨胀型阻燃剂与有机蒙脱土协效阻燃乙烯-醋酸乙烯共聚物性能

doi: 10.13801/j.cnki.fhclxb.20201105.002
基金项目: 国家自然科学基金重大项目课题(51991352);江苏省科技成果转化专项(BA2018107)
详细信息
    通讯作者:

    胡源,博士,研究员,研究方向为新型阻燃剂和阻燃聚合物材料及安全工程相关材料  E-mail:yuanhu@ustc.edu.cn

  • 中图分类号: TQ328.3

Synergistic properties of microencapsulated intumescent flame retardant-organically modified montmorillonite/ethylene-vinyl acetate copolymer composites

  • 摘要: 通过纳米复合的方式,将微胶囊化的膨胀型阻燃体系—聚磷酸铵(APP)-季戊四醇(PER)与有机改性的片层蒙脱土(OMMT)用于协效阻燃乙烯-醋酸乙烯共聚物(EVA)。采用XRD、TEM、TGA、极限氧指数(LOI)、垂直燃烧(UL-94)、锥形量热仪、烟密度和动态机械热分析对微胶囊化APP(MCAPP)-微胶囊化PER(MCPER)-OMMT/EVA复合材料的结构与性能进行研究。研究结果表明,OMMT被完全剥离开,并以层离或插层的状态分散在EVA中;MCAPP-MCPER与OMMT之间存在明显的协效阻燃作用,用3wt%OMMT代替MCAPP-MCPER后,MCAPP-MCPER-OMMT/EVA复合材料的LOI值从25.5vol%提高到29.5vol%,垂直燃烧结果由V-2上升到V-0级别,残炭量也由14.5wt%增大到15.9wt%,烟密度由154.7 g/s降低到97.5 g/s,材料的阻燃性能得到有效提高。此外,万能拉伸测试及动态机械热分析测试表明,通过纳米复合制备的阻燃MCAPP-MCPER-OMMT/EVA复合材料具有更好的力学和动态热机械性能。

     

  • 图  1  OMMT粉体和MCAPP-MCPER-OMMT3/EVA纳米复合材料的XRD图谱

    Figure  1.  XRD patterns of OMMT and MCAPP-MCPER-OMMT3/EVA composites

    图  2  MCAPP-MCPER-OMMT3/EVA纳米复合材料在不同放大倍数下的TEM图像

    Figure  2.  TEM images of MCAPP-MCPER-OMMT3/EVA composites at different magnifications ((a) 200 nm; (b) 20 nm)

    图  3  MCAPP-MCPER-OMMT/EVA复合材料的热释放速率曲线 (a) 和总热释放量曲线 (b)

    Figure  3.  Heat release rate (a) and total heat release (b) curves of MCAPP-MCPER-OMMT/EVA composites

    图  4  MCAPP-MCPER-OMMT/EVA复合材料的烟密度曲线

    Figure  4.  Smoke density curves of MCAPP-MCPER-OMMT/EVA composites

    图  5  MCAPP-MCPER-OMMT/EVA复合材料的TG曲线 (a) 和DTG曲线 (b)

    Figure  5.  TG (a) and DTG (b) curves of MCAPP-MCPER-OMMT/EVA composites

    图  6  MCAPP-MCPER-OMMT/EVA复合材料的tanδ和储能模量与温度的关系

    Figure  6.  Temperature dependence of tanδ and storage modules of MCAPP-MCPER-OMMT/EVA composites

    表  1  微胶囊化聚磷酸铵(MCAPP)-微胶囊化季戊四醇(MCPER)-有机蒙脱土(OMMT)/乙烯-醋酸乙烯共聚物(EVA)阻燃复合材料的配方及其相应的阻燃测试结果

    Table  1.   Formulations and flame retardant test results of microencapsulated ammonium polyphosphate (MCAPP)-microencapsulated pentaerythritol (MCPER)-organically modified montmorillonite (OMMT)/ethylene-vinyl acetate (EVA) composites

    SampleEVA/wt%MCAPP/wt%MCPER/wt%OMMT/wt%LOI/%UL-94
    EVA 100 0 0 0 17.0 NR
    MCAPP-MCPER/EVA 75 16.67 8.33 0 25.5 V-2
    MCAPP-MCPER-OMMT0.5/EVA 75 16.33 8.17 0.5 26.0 V-2
    MCAPP-MCPER-OMMT1/EVA 75 16.00 8.01 1.0 26.5 V-2
    MCAPP-MCPER-OMMT1.5/EVA 75 15.67 7.83 1.5 27.5 V-2
    MCAPP-MCPER-OMMT2/EVA 75 15.33 7.67 2.0 28.0 V-0
    MCAPP-MCPER-OMMT3/EVA 75 14.67 7.33 3.0 29.5 V-0
    MCAPP-MCPER-OMMT5/EVA 75 13.33 6.67 5.0 26.5 NR
    Notes: LOI—Limiting oxygen index; UL-94—Underwriters laboratories 94 vertical burning; NR—No rating.
    下载: 导出CSV

    表  2  MCAPP-MCPER-OMMT/EVA复合材料的锥形量热仪测试数据

    Table  2.   Cone data of MCAPP-MCPER-OMMT/EVA composites

    SampleTTI/sTp/sPHRR/(kW·m−2)THR/(MJ·m−2)Average HRR/(kW·m−2)Residues/wt%
    EVA 48 145 1 503.31 89.90 495.4 0.2
    MCAPP-MCPER/EVA 24 280 298.95 81.33 188.6 14.5
    MCAPP-MCPER-OMMT3/EVA 15 100 192.16 73.52 138.4 15.9
    Notes: TTI—Time to ignition; PHRR—Peak of heat release rate; Tp—Time to PHRR; THR—Total heat release; Average HRR—Average heat release rate.
    下载: 导出CSV

    表  3  MCAPP-MCPER-OMMT/EVA复合材料的TGA数据

    Table  3.   TGA data of MCAPP-MCPER-OMMT/EVA composites

    SampleT−5wt%/℃T1max/℃T2max/℃Residues at 700℃/wt%
    EVA 335.6 350.0 471.9 0.4
    MCAPP-MCPER/EVA 304.8 355.7 472.6 9.9
    MCAPP-MCPER-OMMT3/EVA 311.9 356.7 474.5 13.1
    Notes: T−5wt%—Onset degradation temperature; T1max and T2max—Maximum decomposition temperature in the first and second stage.
    下载: 导出CSV

    表  4  MCAPP-MCPER-OMMT/EVA复合材料的力学性能

    Table  4.   Mechanical properties of MCAPP-MCPER-OMMT/EVA composites

    SampleTensile strength/MPaElongation at break/%
    EVA 18.6±1.5 889.3±39
    MCAPP-MCPER/EVA 8.1±0.7 731.0±30
    MCAPP-MCPER-OMMT3/EVA 11.0±0.9 780.8±35
    下载: 导出CSV
  • [1] XIAO N Y, ZHANG X Q, MA X Y, et al. Construction of EVA/chitosan based PEG-PCL micelles nanocomposite films with controlled release of iprodione and its application in pre-harvest treatment of grapes[J]. Food Chemistry,2020,331:127-277.
    [2] CHAI F, WANG G, LIU F, et al. Preparation and properties of flame-retardant neutron shielding material based on EVA polymer reinforced by radiation modification[J]. Radiation Physics and Chemistry,2020,174:108984.
    [3] 陈志杰, 郑玉婴, 张延兵, 等. 无卤阻燃乙烯-醋酸乙烯酯共聚物泡沫复合材料的制备及性能表征[J]. 复合材料学报, 2015, 32(3):649-656.

    CHEN Zhijie, ZHENG Yuying, ZHANG Yanbing, et al. Preparation and property characterization of halogen-free fire retardant ethylene-vinyl acetate copolymer foam compo-sites[J]. Acta Materiae Compositae Sinica,2015,32(3):649-656(in Chinese).
    [4] 刘继纯, 李行, 贺云鹏, 等. 纳米Mg(OH)2微胶囊红磷/乙烯-乙酸乙烯酯共聚物阻燃复合材料的性能[J]. 复合材料学报, 2019, 36(11):2530-2540.

    LIU Jichun, LI Xing, HE Yunpeng, et al. Properties of nano Mg(OH)2-microencapsulated red phosphorus/ethylene-vinyl acetate copolymer flame-retardant composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2530-2540(in Chinese).
    [5] WANG X, BI B, LIU J, et al. Halogen-free intumescent flame-retardant ethylene-vinyl acetate copolymer system based on organic montmorillonite and graphene nanosheets[J]. Journal of Applied Polymer Science,2018,135(23):46361.
    [6] XIE F, WANG Y Z. A novel intumescent flame-retardant polyete system[J]. Macromolecular Materials and Enginneering,2006,291(3):247-253. doi: 10.1002/mame.200500356
    [7] XU Z, CHU Z, YAN L, et al. Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system[J]. Polymer Composites,2019,40(7):2712-2723. doi: 10.1002/pc.25077
    [8] WANG B, SHENG H, SHI Y, et al. Recent advances for microencapsulation of flame retardant[J]. Polymer Degradation and Stability,2015,113:96-109. doi: 10.1016/j.polymdegradstab.2015.01.008
    [9] WANG Q, LI W, ZHANG L, et al. Enhanced flame retardancy and mechanical properties of intumescent flame-retardant polypropylene with triazine derivative-modified nano-SiO2[J]. Polymer Science Series B,2020,62(3):306-318.
    [10] CHEN B, GAO W, SHEN J, et al. The multilayered distribution of intumescent flame retardants and its influence on the fire and mechanical properties of polypropylene[J]. Composites Science and Technology,2014,93:54-60. doi: 10.1016/j.compscitech.2013.12.022
    [11] LI X L, ZHANG F H, JIAN R K, et al. Influence of eco-friendly calcium gluconate on the intumescent flame-retardant epoxy resin: Flame retardancy, smoke suppression and mechanical properties[J]. Composites Part B: Engineering,2019,176:107200. doi: 10.1016/j.compositesb.2019.107200
    [12] CHEN J, WANG J, CHEN H, et al. Synergistic effect of intumescent flame retardant and attapulgite on mechanical properties and flame retardancy of glass fibre reinforced polyethylene composites[J]. Composite Structures,2020:246.
    [13] ZHENG Z, LIU Y, DAI B, et al. Synergistic effect of organically modified zinc aluminum layered double hydroxide in intumescent flame-retarding polypropylene composites containing melamine phytate and dipentaerythritol[J]. Polymer Engineering and Science,2019,59:2301-2312. doi: 10.1002/pen.25233
    [14] QIAN W, LIA X Z, ZHOU J, et al. High synergistic effects of natural-based tea saponin in intumescent flameretardant coatings for enhancement of flame retardancy and pyrolysis performance[J]. Progress in Organic Coatings,2019,127:408-418. doi: 10.1016/j.porgcoat.2018.10.031
    [15] LAI X J, ZENG X G, LI H Q, et al. Synergistic effect of phosphorus-containing nanosponges on intumescent flame-retardant polypropylene[J]. Journal of Applied Polymer Science,2012,125:1758-1765. doi: 10.1002/app.35646
    [16] 程博, 李定华, 吴凡, 等. 不同蒙脱土Al(OH)3/乙烯-醋酸乙烯酯复合材料力学性能和阻燃性能的影响[J]. 复合材料学报, 2017, 34(12):2715-2721.

    CHENG Bo, LI Dinghua, WU Fan, et al. Effect of montmorillonite type on mechanical and flame retarded properties of Al(OH)3/ethylene vinyl acetate copolymer composites[J]. Acta Materiae Compositae Sinica,2017,34(12):2715-2721(in Chinese).
    [17] TANG Q B, WANG B B, TANG G, et al. Preparation of microcapsulated ammonium polyphosphate, pentaerythritol with glycidyl methacrylate, butyl methacrylate and their synergistic flame- retardancy for ethylene vinyl acetate copolymer[J]. Polymers for Advanced Technologies,2014,25:73-82. doi: 10.1002/pat.3207
    [18] 中国国家标准化管理委员会. 塑料燃烧性能的测定水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic ofChina. Plastics: Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [19] American Society for Testing Material International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863−19[S]. West Conshohocken: ASTM International, 2019.
    [20] International Organization for Standardization. Reaction-to-fire tests-Heat release, smoke production and mass loss rate-Part 5: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement) under reduced oxygen atmospheres: ISO/TS 5660-5:2020[S]. West Conshohocken: ASTM International, 2020.
    [21] International Organization for Standardization. Controlled equivalence ratio method for the determination of hazardous components of fire effluents-Steady-state tube furnace: ISO/TS 19700:2016[S]. West Conshohocken: ASTM International, 2016.
    [22] 吴发盛. 金属氧化物/蒙脱土对膨胀型阻燃聚丙烯复合物性能的研究[D]. 上海: 上海交通大学, 2009.

    WU Fasheng. Study on synergistic effects of metal oxides/organic-modified montmorillonite in an intumescent flame retardant polypropylene system[d]. Shanghai: Shanghai Jiao Tong University, 2009(in Chinese).
    [23] JENNY A, MERIMA P, ALBERTO F. Novel flame retardants containing cylodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties[J]. Polymer Degradation Stability,2010,95:2093-2100. doi: 10.1016/j.polymdegradstab.2010.06.030
    [24] PALACIOS J, PERERA R, ROSALES C, et al. Thermal degradation kinetics of PP/OMMT nanocomposites with mPE and EVA[J]. Polymer Degradation and Stability,2012,97(5):729-737. doi: 10.1016/j.polymdegradstab.2012.02.009
    [25] CHEN X, LIU L, ZHUO J, et al. Influence of organic-modified iron-montmorillonite on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites[J]. High Performance Polymers,2015,27(2):233-246. doi: 10.1177/0954008314544341
    [26] FU M Z, QU B J. Synergistic flame retardant mechanism of fumed silica in ethylene-vinylacetate/magnesium hydroxide blends[J]. Polymer Degradation Stability,2004,85(1):633-639. doi: 10.1016/j.polymdegradstab.2004.03.002
    [27] DUTTA S K, BHOWMICK A K, MUKUNDA P G. Thermal degradation studies of electron beam cured ethylene-vinyl acetate copolymer[J]. Polymer Degradation Stability,1995,50(1):75-82. doi: 10.1016/0141-3910(95)00125-6
    [28] RAFIEE F, OTADI M, GOODARZI V, et al. Thermal and dynamic mechanical properties of PP/EVA nanocomposites containing organo-modified layered double hydroxides[J]. Composites Part B: Engineering,2016,103:122-130. doi: 10.1016/j.compositesb.2016.08.013
    [29] STARK W, JAUNICH M. Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA[J]. Polymer Testing,2011,30(2):236-242. doi: 10.1016/j.polymertesting.2010.12.003
    [30] WANG B B, ZHOU K Q, WANG L, et al. Enhancement on physical properties of flame retarded ethylene-vinyl acetate copolymer/ferric pyrophosphate composites through electron beam irradiation[J]. Composites Part B: Engineering,2012,43:641-646. doi: 10.1016/j.compositesb.2011.08.027
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  883
  • HTML全文浏览量:  398
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 录用日期:  2020-10-16
  • 网络出版日期:  2020-11-06
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回