留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温后CFRP筋及其粘结式锚固系统的力学性能

方志 方川 蒋正文 王志伟 李俊宇 张玉庆

方志, 方川, 蒋正文, 等. 高温后CFRP筋及其粘结式锚固系统的力学性能[J]. 复合材料学报, 2021, 38(12): 4031-4041. doi: 10.13801/j.cnki.fhclxb.20210215.005
引用本文: 方志, 方川, 蒋正文, 等. 高温后CFRP筋及其粘结式锚固系统的力学性能[J]. 复合材料学报, 2021, 38(12): 4031-4041. doi: 10.13801/j.cnki.fhclxb.20210215.005
FANG Zhi, FANG Chuan, JIANG Zhengwen, et al. Mechanical properties of CFRP bar and bond-type anchorage system after elevated temperature exposure[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4031-4041. doi: 10.13801/j.cnki.fhclxb.20210215.005
Citation: FANG Zhi, FANG Chuan, JIANG Zhengwen, et al. Mechanical properties of CFRP bar and bond-type anchorage system after elevated temperature exposure[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4031-4041. doi: 10.13801/j.cnki.fhclxb.20210215.005

高温后CFRP筋及其粘结式锚固系统的力学性能

doi: 10.13801/j.cnki.fhclxb.20210215.005
详细信息
    通讯作者:

    方志,博士,教授,研究方向为基于高性能材料工程结构的设计理论及工程应用技术 E-mail:fangzhi@hnu.edu.cn

  • 中图分类号: TU502

Mechanical properties of CFRP bar and bond-type anchorage system after elevated temperature exposure

  • 摘要: 为明确高温后碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材及其粘结型锚固系统的力学性能,以筋材的处理温度为试验参数,完成了12个筋材试件的轴向拉伸试验;以粘结式锚具的处理温度和粘结长度为试验参数,完成了36个试件的锚固性能试验。结果表明:对于筋材轴向拉伸试件,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变较常温试件分别下降了6.4%、8.2%、3.8%和16.6%、18.3%、8.3%;对于锚固性能试验,试件的粘结强度随处理温度和粘结长度的增加而降低,粘结长度一定时,处理温度为200℃与300℃试件的粘结强度较常温试件分别下降了31.5%~36.3%和44.2%~47.4%。建立了适于分析高温后CFRP筋轴向拉伸性能、粘结型锚固系统粘结强度及临界锚固长度的实用计算公式,且具较高精度。

     

  • 图  1  碳纤维增强树脂复合材料(CFRP)筋轴向拉伸试件

    Figure  1.  Axial tensile carbon fiber reinforced polymer (CFRP) bar specimen

    图  2  CFRP筋-活性粉末混凝土(RPC)锚固性能试件

    Figure  2.  Anchorage performance CFRP bar-reactive powder concrete (RPC) specimen

    图  3  温升装置

    Figure  3.  Setup of elevated temperature

    图  4  温升历程

    Figure  4.  Process of elevated temperature

    图  5  CFRP筋及其外观尺寸

    Figure  5.  Dimensions of CFRP bar

    图  6  轴向拉伸试验加载装置

    Figure  6.  Loading setup of axial tensile test

    图  7  锚固性能试验加载装置

    Figure  7.  Loading setup of anchorage performance test

    图  8  CFRP筋轴向拉伸破坏形态

    Figure  8.  Axial tensile failure modes of CFRP bar

    图  9  CFRP筋轴向拉伸试验的应力-应变曲线

    Figure  9.  Stress-strain curves of CFRP bar in axial tensile test

    fu—Tensile strength

    图  10  温升作用对CFRP筋材轴拉性能的影响

    Figure  10.  Effect of elevated temperature on the axial tensile performance of CFRP bar

    图  11  CFRP筋-RPC锚固性能试件破坏形态

    Figure  11.  Typical failure mode of anchorage performance CFRP bar-RPC specimens

    图  12  CFRP筋-RPC锚固性能试件的荷载-滑移曲线

    Figure  12.  Force-slip curves of anchorage performance CFRP bar-RPC specimens

    图  13  处理温度与粘结长度对CFRP筋-RPC界面粘结强度的影响

    Figure  13.  Effect of elevated temperature and bond length on bond strength of interface of CFRP bar and RPC

    图  14  高温后CFRP筋轴拉性能对比

    Figure  14.  Comparison of axial tensile performance of CFRP bars after elevated temperature exposure

    表  1  CFRP筋外观尺寸及玻璃化转变温度Tg

    Table  1.   Dimensions and glass transition temperature Tg of CFRP bar

    Nominal diameter/mmRib width/mmRib height/mmEmbossing spacing/mmTg/℃
    129.260.2714.8211.6
    下载: 导出CSV

    表  2  RPC配合比及抗压强度

    Table  2.   Mix proportion and compressive strengths of RPC

    Strength gradeCementSilica fumeQuartz flourQuartz sandWater reducerWater binder ratioMeasured strength/MPa
    RPC15010.250.251.10.020.16158
    下载: 导出CSV

    表  3  CFRP筋-RPC轴向拉伸试验结果

    Table  3.   Results of axial tensile test for CFRP bar-RPC

    Specimen code$\overline{ P_{\rm{u}}}$/kNPu/kNfu/MPa$ \overline{ f_{\rm{u}}} $/MPaE/GPa$ \overline E $/GPaεu/10−6$ \overline{\varepsilon _{\rm{u}}} $/10−6
    CFRP-RPC-T25-1 280.8 282.8 2631.1 162.2 15627
    CFRP-RPC-T25-2 283.1 2652.6 2649.8 161.8 159.9 15464 15513
    CFRP-RPC-T25-3 284.5 2665.7 155.6 15448
    CFRP-RPC-T100-1 279.9 279.6 2622.6 162.3 15482
    CFRP-RPC-T100-2 278.8 2612.3 2619.8 153.6 157.3 15385 15428
    CFRP-RPC-T100-3 280.1 2624.5 156.0 15417
    CFRP-RPC-T200-1 260.6 264.7 2441.8 151.7 15084
    CFRP-RPC-T200-2 269.2 2522.4 2480.2 146.2 146.8 15012 14925
    CFRP-RPC-T200-3 264.3 2476.5 142.5 14679
    CFRP-RPC-T300-1 242.7 235.8 2274.1 128.4 14285
    CFRP-RPC-T300-2 231.4 2168.2 2209.4 133.3 130.7 14364 14232
    CFRP-RPC-T300-3 233.3 2186.0 130.4 14047
    Notes: Specimen code indicates the test type and treatment temperature; for example, CFRP-RPC-T25-1 means the first specimen of CFRP-RPC anchorage specimen treated at 25℃ in axial tensile test; Pu—Tensile breaking force; $\overline {{P_{\rm{u}}}} $—Average value; $\overline {{f_{\rm{u}}}} $—Average value; E—Elastic modulus; $\overline E $—Average value; εu—Ultimate tensile strain; $\overline {{\varepsilon _{\rm{u}}}} $—Average value.
    下载: 导出CSV

    表  4  CFRP筋-RPC锚固性能试验结果

    Table  4.   Results of anchorage performance test for CFRP bar-RPC

    Specimen codeT/
    l/
    mm
    Pu/
    kN
    ${\overline {P_{\rm{u}}} }$/
    kN
    τu/
    MPa
    s/
    mm
    Specimen codeT/
    l/
    mm
    Pu/
    kN
    ${\overline {P_{\rm{u}}}} $/
    kN
    τu/
    MPa
    s/
    mm
    CFRP-RPC-T25-L5d-1 25 60 69.3 69.35 30.67 5.42 CFRP-RPC-T200-L5d-1 200 60 41.23 47.53 21.02 5.74
    CFRP-RPC-T25-L5d-2 69.45 5.36 CFRP-RPC-T200-L5d-2 48.9 5.68
    CFRP-RPC-T25-L5d-3 69.3 5.26 CFRP-RPC-T200-L5d-3 52.45 5.80
    CFRP-RPC-T25-L10d-1 25 120 135.3 134.1 29.66 5.52 CFRP-RPC-T200-L10d-1 200 120 85.5 85.46 18.9 5.91
    CFRP-RPC-T25-L10d-2 132.9 5.35 CFRP-RPC-T200-L10d-2 81.68 5.98
    CFRP-RPC-T25-L10d-3 CFRP-RPC-T200-L10d-3 89.2 5.93
    CFRP-RPC-T25-L15d-1 25 180 192.4 190.47 28.08 CFRP-RPC-T200-L15d-1 200 180 118.9 123.57 18.22
    CFRP-RPC-T25-L15d-2 192.7 CFRP-RPC-T200-L15d-2 131.8
    CFRP-RPC-T25-L15d-3 186.3 CFRP-RPC-T200-L15d-3 120
    CFRP-RPC-T100-L5d-1 100 60 62.37 61.09 27.02 5.14 CFRP-RPC-T300-L5d-1 300 60 35.92 37.42 16.55 5.68
    CFRP-RPC-T100-L5d-2 59.35 5.26 CFRP-RPC-T300-L5d-2 41.98 5.36
    CFRP-RPC-T100-L5d-3 61.55 5.37 CFRP-RPC-T300-L5d-3 34.35 5.41
    CFRP-RPC-T100-L10d-1 100 120 119.5 118.23 26.15 5.85 CFRP-RPC-T300-L10d-1 300 120 66.23 70.12 15.51 5.73
    CFRP-RPC-T100-L10d-2 115.5 5.84 CFRP-RPC-T300-L10d-2 74.9 5.75
    CFRP-RPC-T100-L10d-3 119.7 6.73 CFRP-RPC-T300-L10d-3 69.23 5.68
    CFRP-RPC-T100-L15d-1 100 180 173.6 173 25.51 CFRP-RPC-T300-L15d-1 300 180 105.3 100.11 14.76
    CFRP-RPC-T100-L15d-2 174.3 CFRP-RPC-T300-L15d-2 96.93
    CFRP-RPC-T100-L15d-3 171.1 CFRP-RPC-T300-L15d-3 98.11
    Notes: Specimen code indicates the test type and treatment temperature; for example, CFRP-RPC-T25-L5d-1 means the first specimen of CFRP-RPC anchorage specimen treated at 25℃ with bond length of 5d; T—Treatment temperature; l—Bond length; τu—Average bond strength; s—Slip of loading end corresponding to Pu.
    下载: 导出CSV

    表  5  CFRP筋-RPC试件粘结强度试验值与计算值对比

    Table  5.   Comparison between measured and predicted bond strength of CFRP bar-RPC specimen

    Specimen codefcu/MPaτu,t/MPaτu,c/MPaτu,t/τu,c
    CFRP-RPC-T25-L5d 158 30.67 30.97 1.01
    CFRP-RPC-T25-L10d 158 29.66 29.06 0.98
    CFRP-RPC-T25-L15d 158 28.08 28.42 1.01
    CFRP-RPC-T100-L5d 158 27.02 26.91 1.00
    CFRP-RPC-T100-L10d 158 26.15 25.25 0.97
    CFRP-RPC-T100-L15d 158 25.51 24.70 0.97
    CFRP-RPC-T200-L5d 158 21.02 21.49 1.02
    CFRP-RPC-T200-L10d 158 18.9 20.17 1.07
    CFRP-RPC-T200-L15d 158 18.22 19.72 1.08
    CFRP-RPC-T300-L5d 158 16.55 16.08 0.97
    CFRP-RPC-T300-L10d 158 15.51 15.08 0.97
    CFRP-RPC-T300-L15d 158 14.76 14.75 1.00
    Average 1.00
    Variation coefficient 0.04
    Notes: fcu—Cube compressive strength of RPC; τu,t, τu,c—Experimental and calculated values of interfacial bond strength between CFRP bars and RPC, respectively.
    下载: 导出CSV

    表  6  CFRP筋-RPC试件临界锚固长度计算值及预测的破坏形态

    Table  6.   Critical anchorage length determined by formula and predicted failure mode of CFRP bar-RPC specimen

    Source of
    test results
    Specimen codeT/℃Anchorage
    length/mm
    Actua failure
    mode
    Critical anchorage
    length/mm
    Predicted
    failure mode
    Present study CFRP-RPC-T25 25 360 Fracture 284.4 Fracture
    CFRP-RPC-T100
    CFRP-RPC-T200
    CFRP-RPC-T300
    Present study CFRP-RPC-T25-L15d 25 180 Slip 284.4 Slip
    CFRP-RPC-T100-L15d 100 324.8
    CFRP-RPC-T200-L15d 200 386.5
    CFRP-RPC-T300-L15d 300 462.0
    Ref.[17] AT30 30 160 Fracture 126.3 Fracture
    AT100 100 Fracture 151.1 Fracture
    AT200 200 Slip 221.0 Slip
    Notes: Failure modes of tensile failure in CFRP bar and slip failure in CFRP-RPC interface were abbreviated as fracture and slip, respectively.
    下载: 导出CSV
  • [1] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.

    TENG Jinguang. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese).
    [2] 叶列平, 冯鹏. FRP 在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36.

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese).
    [3] 朱虹, 钱洋. 工程结构用FRP筋的力学性能[J]. 建筑科学与工程学报, 2006, 23(3):26-31. doi: 10.3321/j.issn:1673-2049.2006.03.005

    ZHU Hong, QIAN Yang. Mechanics performance of FRP tendons used in engineering structure[J]. Journal of Architecture and Civil Engineering,2006,23(3):26-31(in Chinese). doi: 10.3321/j.issn:1673-2049.2006.03.005
    [4] 郝庆多, 王勃, 欧进萍. 纤维增强塑料筋在土木工程中的应用[J]. 混凝土, 2006(9):38-40, 44. doi: 10.3969/j.issn.1002-3550.2006.09.012

    HAO Qingduo, WANG Bo, OU Jinping. Fiber reinforced polymer rebar's application to civil engineering[J]. Concrete,2006(9):38-40, 44(in Chinese). doi: 10.3969/j.issn.1002-3550.2006.09.012
    [5] 方志, 梁栋, 蒋田勇. 不同粘结介质中CFRP筋锚固性能的试验研究[J]. 土木工程学报, 2006, 39(3):47-51.

    FANG Zhi, LIANG Dong, JIANG Tianyong. Experimental investigation on the anchorage performance of CFRP tendon in different bond mediums[J]. China Civil Engineering Journal,2006,39(3):47-51(in Chinese).
    [6] REDA T M M, SHRIVE N G. New concrete anchors for carbon fiber reinforced polymer post-tensioning tendons Part 1: State-of-the-art review/design[J]. ACI Structural Journal,2003,100(1):86-95.
    [7] WANG L C, ZHANG J Y, XU J, et al. Anchorage systems of CFRP cables in cable structures-A review[J]. Construction and Building Materials,2018,160:82-99. doi: 10.1016/j.conbuildmat.2017.10.134
    [8] LIU Y, ZWINGMANN B, SCHLAICH M. Carbon fiber reinforced polymer for cable structures-A review[J]. Polymers,2015,7(10):2078-2099. doi: 10.3390/polym7101501
    [9] FANG Z, ZHANG K Y, TU B. Experimental investigation of a Bond-type anchorage system for multiple FRP tendons[J]. Engineering Structures,2013,57(12):364-373.
    [10] ZHANG K Y, FANG Z, ANTONIO N, et al. Experimental study of a large-scale ground anchor system with FRP tendon and RPC grout medium[J]. Journal of Composite for Construction,2015,9(4):04014073.
    [11] 李国强, 吴波, 蒋首超. 工程结构抗火研究进展与建议[J]. 建筑钢结构进展, 2010, 12(5):13-18.

    LI Guoqiang, WU Bo, JIANG Shouchao. State of the art and suggestions of research on fire resistance of structures[J]. Progress in Steel Building Structures,2010,12(5):13-18(in Chinese).
    [12] ZHANG Y, FANG Z, JIANG R N, et al. Static performance of a long-span concrete cable-stayed bridge subjected to multiple-cable loss during construction[J]. Journal of Bridge Engineering,2010,25(3):04020002.
    [13] 张帅, 张隐, 潘明珠. 阻燃预警智能涂层的研究进展[J]. 复合材料学报, 2021, 38(1):1-12. doi: 10.13801/j.cnki.fhclxb.20200813.001

    ZHANG Shuai, ZHANG Yin, PAN Mingzhu. Research progress of intelligent flame retardant coating with fire-warning capabilities[J]. Acta Materiae Compositae Sinica,2021,38(1):1-12(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200813.001
    [14] 姚秀鹏, 韩阳, 沈雷, 等. 高温后聚丙烯纤维增强水泥基复合材料导热的多尺度方法[J]. 复合材料学报, 2020, 38(10):3541-3552.

    YAO Xiupeng, HAN Yang, SHEN Lei, et al. Multi-scale method for thermal conductivity of polypropylene fiber reinforced cementitious composites after high temperature[J]. Acta Materiae Compositae Sinica,2020,38(10):3541-3552(in Chinese).
    [15] HAMED A, MILAD B, ESMAEIL P N, et al. The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures[J]. Construction and Building Materials,2017,157:1001-1010. doi: 10.1016/j.conbuildmat.2017.09.160
    [16] 周飞. 火场温度作用下CFRP筋混凝土受弯构件的结构性能研究[D]. 南京: 东南大学, 2019.

    ZHOU Fei. Study on structural behavior of concrete flexural members with CFRP tendons under fire action[D]. Nanjing: Southeast University, 2019(in Chinese).
    [17] 方志, 黄道斌, 方亚威, 等. 经历不同温升作用后CFRP筋受力性能的试验研究[J]. 土木工程学报, 2020, 53(1):52-63.

    FANG Zhi, HUANG Daobin, FANG Yawei, et al. Experimental study on mechanical properties of CFRP bar after elevated temperature exposure[J]. China Civil Engineering Journal,2020,53(1):52-63(in Chinese).
    [18] HAMAD R J A, MEGAT J M A, HADDAD R H. Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures[J]. Construction and Building Materials,2017,142:521-535. doi: 10.1016/j.conbuildmat.2017.03.113
    [19] ELLIS D S, TABATABAI H, NABIZADEH A. Residual tensile strength and bond properties of GFRP bars after exposure to elevated temperatures[J]. Materials,2018,11(3):346. doi: 10.3390/ma11030346
    [20] YU B, KODUR V K R. Effect of high temperature on bond strength of near-surface mounted FRP reinforcement[J]. Composite Structures,2014,110:88-97. doi: 10.1016/j.compstruct.2013.11.021
    [21] 王英来. 高温后FRP筋拉伸性能及其与混凝土粘结性能试验研究[D]. 郑州: 郑州大学, 2013.

    WANG Yinglai. Experimental study on tensile property of frp bars and bond behavior between frp bars and concrete after high temperature[D]. Zhengzhou: Zhengzhou University, 2013(in Chinese).
    [22] 中国建筑材料联合会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013.

    China Building Material Council. Fundamental mechanical properties test method of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: China Standars Press, 2013(in Chinese).
    [23] 方志, 王常林, 张洪侨, 等. 碳纤维绞线在活性粉末混凝土中锚固性能的试验研究[J]. 中国公路学报, 2016, 29(6):198-206. doi: 10.3969/j.issn.1001-7372.2016.06.006

    FANG Zhi, WANG Changlin, ZHANG Hongqiao, et al. Experimental study on anchoring performance of CFRP strand in reactive powder concrete[J]. China Journal of Highway and Transport,2016,29(6):198-206(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.06.006
    [24] ACI. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars: ACI 440.1R—15[S]. Farmington Hills: American Concrete Institute, 2015.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  1344
  • HTML全文浏览量:  526
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-11
  • 录用日期:  2021-01-23
  • 网络出版日期:  2021-02-18
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回