留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加工芳纶纳米纤维/聚乙烯醇水凝胶制备高强度复合薄膜

李小林 樊新波 王建锋

李小林, 樊新波, 王建锋. 加工芳纶纳米纤维/聚乙烯醇水凝胶制备高强度复合薄膜[J]. 复合材料学报, 2021, 38(12): 3986-3995. doi: 10.13801/j.cnki.fhclxb.20210205.001
引用本文: 李小林, 樊新波, 王建锋. 加工芳纶纳米纤维/聚乙烯醇水凝胶制备高强度复合薄膜[J]. 复合材料学报, 2021, 38(12): 3986-3995. doi: 10.13801/j.cnki.fhclxb.20210205.001
LI Xiaolin, FAN Xinbo, WANG Jianfeng. Processing aramid nanofiber/poly(vinyl alcohol) hydrogel into high-strength composite films[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 3986-3995. doi: 10.13801/j.cnki.fhclxb.20210205.001
Citation: LI Xiaolin, FAN Xinbo, WANG Jianfeng. Processing aramid nanofiber/poly(vinyl alcohol) hydrogel into high-strength composite films[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 3986-3995. doi: 10.13801/j.cnki.fhclxb.20210205.001

加工芳纶纳米纤维/聚乙烯醇水凝胶制备高强度复合薄膜

doi: 10.13801/j.cnki.fhclxb.20210205.001
基金项目: 国家自然科学基金(51973054);湖南省高层次创新人才计划(2018RS3055);长沙市科技计划项目(kq1907107)
详细信息
    通讯作者:

    王建锋,博士,教授,研究方向为层状纳米复合材料的结构设计、组装及多功能特性  E-mail:wangjianfeng@hnu.edu.cn

  • 中图分类号: TB332

Processing aramid nanofiber/poly(vinyl alcohol) hydrogel into high-strength composite films

  • 摘要: 芳纶纳米纤维(ANF)具有大长径比、高比表面积、丰富的表面酰胺官能团和优异的力学性能,是制备高强度纳米复合材料的理想构筑单元。本文开发了一种新颖的水凝胶加工策略,用于制备ANF增强聚乙烯醇(PVA)复合薄膜,逐步优化了ANF的含量、水凝胶的预拉伸比和PVA组份的化学交联,表征分析了复合薄膜中ANF的分散、取向、PVA的交联形式及ANF与PVA之间的界面氢键作用,当ANF的质量分数为25wt%、水凝胶的预拉伸比为55%和采用氯化铜交联PVA基体时,复合薄膜的力学性能最优,其杨氏模量和拉伸强度分别高达(14.6±0.3) GPa 和(496.5±10.0) MPa,远远优于文献报道的ANF增强聚合物复合材料。此外,该高强度纳米复合薄膜同时具有良好的透明性和优异的紫外屏蔽性能,透明度大于72.1%,能够屏蔽大于99.98%紫外线,可用做先进包装材料。

     

  • 图  1  芳纶纳米纤维/聚乙烯醇(ANF/PVA)复合薄膜的制备过程与结构表征

    Figure  1.  Preparation process and structure characterization of ANF/PVA composite films

    DMSO—Dimethyl sulfoxide

    图  2  ANF/PVA复合薄膜(4#)横截面SEM图像

    Figure  2.  SEM image of cross section of ANF/PVA composite films (4#)

    图  3  ANF薄膜、PVA薄膜和ANF/PVA复合薄膜的FTIR图谱

    Figure  3.  FTIR spectra of ANF films, PVA films and ANF/PVA composite films

    图  4  ANF/PVA复合薄膜的应力-应变曲线 (a)、杨氏模量和强度 (b)

    Figure  4.  Stress-strain curves (a) and Young's modulus and strength (b) of ANF/PVA composite films

    图  5  ANF/PVA复合薄膜表面SEM图像

    Figure  5.  Surface SEM images of ANF/PVA composite films

    图  6  不同预拉伸比ANF/PVA复合薄膜纵向的应力-应变曲线 (a)、杨氏模量和强度 (b)

    Figure  6.  Longitudinal stress-strain curves (a) and Young's modulus and strength (b) of ANF/PVA composite films with different pre-stretching ratios

    图  7  不同预拉伸比ANF/PVA复合薄膜横向的应力-应变曲线 (a)、杨氏模量和强度 (b)

    Figure  7.  Transverse Stress-strain curves (a), Young's modulus and strength (b) of ANF/PVA composite films with different pre-stretching ratios

    图  8  PVA与戊二醛、CuCl2交联反应式

    Figure  8.  Crosslinking reaction of PVA by glutaraldehyde and CuCl2

    图  9  ANF/PVA复合薄膜的XPS图谱

    Figure  9.  XPS spectra of ANF/PVA composite films

    图  10  交联前后ANF/PVA复合薄膜纵向的应力-应变曲线(a)、杨氏模量和强度(b)

    Figure  10.  Longitudinal mechanical properties of ANF/PVA composite films: (a) Stress-strain curves; (b) Young's modulus and strength

    图  11  交联前后ANF/PVA复合薄膜横向的应力-应变曲线(a)、杨氏模量和强度(b)

    Figure  11.  Transverse mechanical properties of ANF/PVA composite films: (a) Stress-strain curves; (b) Young's modulus and strength

    图  12  ANF/PVA复合薄膜的SEM图像

    Figure  12.  SEM images of ANF/PVA composite films

    图  13  不同薄膜的透光度 (a) 和平均透过率 (b)

    Figure  13.  Transmittance (a) and average transmittance (b) of different films

    表  1  芳纶纳米纤维/聚乙烯醇(ANF/PVA)复合薄膜的配方

    Table  1.   Formula of aramid nanofiber/poly(vinyl alcohol) hydrogel (ANF/PVA) composite films

    SampleANF/
    wt%
    PVA/
    wt%
    Crosslinking
    agent
    Pre-stretching
    ratio/%
    1# 0 100 No 0
    2# 17 83 No 0
    3# 20 80 No 0
    4# 25 75 No 0
    5# 33 67 No 0
    6# 50 50 No 0
    7# 25 75 No 15
    8# 25 75 No 30
    9# 25 75 No 45
    10# 25 75 No 55
    11# 25 75 Glutaraldehyde (GA) 55
    12# 25 75 CuCl2 55
    下载: 导出CSV

    表  2  交联前后ANF/PVA中C—OH、C—O—C基团的含量变化

    Table  2.   Different of C—OH and C—O—C groups in ANF/PVA before and after crosslinking

    SampleC—OH/%C—O—C/%
    10# 4.4 2.7
    11# 3.3 3.0
    12# 2.1 4.2
    下载: 导出CSV
  • [1] 雷卫华, 陈可平. 聚硅氧烷/ZDMA/短切芳纶纤维复合材料的结构与性能[J]. 复合材料学报, 2021, 38(5):1398-1406.

    LEI Weihua, CHEN Keping. Structure and properties of polysiloxane/ZDMA/short-cutted aramid fiber compo-sites[J]. Acta Materiae Compositae Sinica,2021,38(5):1398-1406(in Chinese).
    [2] LYU J, WANG X, LIU L, et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers[J]. Advanced Functional Materials,2016,26(46):8435-8445. doi: 10.1002/adfm.201603230
    [3] 杨旋, 涂群章, 沈新民, 等. 双键超支化聚硅氧烷在芳纶纤维表面的原位生长[J]. 复合材料学报, 2021, 38(9):3018-3026.

    YANG Xuan, TU Qunzhang, SHEN Xinmin, et al. Study on the in-situ growth of hyperbranched polysioxane with double bonds on the surface of aramid fiber[J]. Acta Materiae Compositae Sinica,2021,38(9):3018-3026(in Chinese).
    [4] 张美云, 罗晶晶, 杨斌, 等. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5):158-166.

    ZHANG Meiyun, LUO Jingjing, YANG Bin, et al. Preparation and application of aramid nanofibers[J]. Materials Guide,2020,34(5):158-166(in Chinese).
    [5] YANG M, CAO K Q, SUI L, et al. Dispersions of aramid nano-fibers: A new nanoscale building block[J]. ACS Nano,2011,5(9):6945-6954. doi: 10.1021/nn2014003
    [6] KUANG Q X, ZHANG D, YE J C, et al. Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers[J]. Journal of Physical Chemistry C,2015,119:27467-27477. doi: 10.1021/acs.jpcc.5b08856
    [7] YANG B, WANG L, ZHANG M Y, et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers (ANFs)[J]. ACS Nano,2019,13(7):7886-7897. doi: 10.1021/acsnano.9b02258
    [8] 曾繁展, 陈宪宏, 王建锋. 连续制备柔性导热的氮化铝/芳纶纳米纤维复合薄膜[J]. 复合材料学报, 2020, 37(12):3043-3051.

    ZENG Fanzhan, CHEN Xianhong, WANG Jianfeng. Continuous fabrication of flexible, thermally conductive aluminum nitride/aramid nanofiber composite films[J]. Acta Materiae Compositae Sinica,2020,37(12):3043-3051(in Chinese).
    [9] MA Z L, KONG S L, MA Z J, et al. Flexible, transparent and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(7):8368-8382. doi: 10.1021/acsnano.0c02401
    [10] WU Y D, FANG W, HUANG Y D. Facile and simple fabri cation of strong, transparent and flexible aramid nano-fibers/bacterial cellulose nanocomposite membranes[J]. Composites Science and Technology,2018,159:70-76. doi: 10.1016/j.compscitech.2018.02.036
    [11] KOO J M, KIM H, LEE M, et al. Nonstop monomer-to-aramid nanofiber synthesis with remarkable reinforcement ability[J]. Macromolecules,2019,52(3):923-934. doi: 10.1021/acs.macromol.8b02391
    [12] ZHU J, BANG S H, MALAKOOTI M H, et al. Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites[J]. ACS Applied Materials & Interfaces,2017,9(12):11167-11175.
    [13] LIN Z J, YANG M, EMRE A, et al. Branched aramid nanofibers[J]. Angewandte Chemie,2017,56(39):11744-11748. doi: 10.1002/anie.201703766
    [14] LYU J, ZHAO X, HOU X L, et al. Electromagnetic interference shielding based on a high strength polyaniline-aramid nanocomposite[J]. Composites Science and Technology,2017,149:159-165. doi: 10.1016/j.compscitech.2017.06.026
    [15] PATTERSON B A, MALAKOOTI M H, LIN J J, et al. Aramid nanofibers for multiscale fiber reinforcement of polymer composites[J]. Composites Science and Technology,2018,162:92-99.
    [16] ZHOU G D, WANG W T, PENG M. Functionalized aramid nanofibers prepared by polymerization induced self-assembly for simultaneously reinforcing and toughening of epoxy and carbon fiber/epoxy multiscale composite[J]. Composites Science and Technology,2018,168:312-319. doi: 10.1016/j.compscitech.2018.10.013
    [17] YANG B, LIN W, ZHANG M Y, et al. Fabrication, applications, and prospects of aramid nanofiber[J]. Advanced Functional Materials,2020,30(22):2000186. doi: 10.1002/adfm.202000186
    [18] MANSUR H S, SADAHIRA C M, SOUZA A N, et al. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde[J]. Materials Science and Engineering C,2008,28(4):539-548. doi: 10.1016/j.msec.2007.10.088
    [19] ALADEJANA J T, WU Z, LI D, et al. Facile approach for glutaraldehyde cross-linking of PVA/Aluminophosphate adhesives for wood-based panels[J]. ACS Sustainable Chemistry & Engineering,2019,7(22):18524-18533.
    [20] PODSIADLO P, KAUSHIK A K, SHIM B S, et al. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links[J]. Journal of Physical Chemistry B,2008,112(46):14359-14363. doi: 10.1021/jp801492n
    [21] LI H, TENG C, WANG J F, et al. A scalable hydrogel processing route to high-strength, foldable clay-based artificial nacre[J]. Composites Science and Technology,2021,201:108543. doi: 10.1016/j.compscitech.2020.108543
    [22] XU L Z, ZHAO X, XU C, et al. Water-rich biomimetic composites with abiotic self-organizing nanofiber network[J]. Advanced Materials,2017,3(1):1703343.
    [23] LV L L, HAN X S, ZONG L, et al. Biomimetic hybridiztion of Kevlar into silk fibroin: nanofibrous strategy for improved mechanic properties of flexible composites and filtration membranes[J]. ACS Nano,2017,11(8):8178-8184. doi: 10.1021/acsnano.7b03119
    [24] GUAN Y, LI W, ZHANG Y, et al. Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions[J]. Composites Science and Technology,2017,144:193-201. doi: 10.1016/j.compscitech.2017.03.010
    [25] WANG F, WU Y, HUANG Y, et al. Strong, transparent and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes[J]. Composites Science and Technology,2018,156:269-275. doi: 10.1016/j.compscitech.2018.01.016
    [26] MREDHA M T I, GUO Y Z, NONOYAMA T, et al. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures[J]. Advanced Materials,2018,30(9):1704937. doi: 10.1002/adma.201704937
    [27] YE D D, LEI X J, LI T, et al. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films[J]. ACS Nano,2019,13(4):4843-4853. doi: 10.1021/acsnano.9b02081
    [28] XUE X D, JIANG K, YIN Q, et al. Tailoring the structure of Kevlar nanofiber and its effects on the mechanical property and thermal stability of carboxylated acrylonitrile butadiene rubber[J]. Journal of Applied Polymer Science,2019,136(26):47698. doi: 10.1002/app.47698
    [29] ZHANG X, CHEN Y, YIN Q, et al. Highly improved compatibility and mechanical properties of carboxylated nitrile rubber/styrene butadiene rubber by incorporating modified Kevlar nanofibers[J]. Materials Chemistry and Physics,2019,238:121926. doi: 10.1016/j.matchemphys.2019.121926
    [30] YANG B, ZHANG M Y, LU Z Q, et al. Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF)[J]. Carbohydrate Polymers,2018,208:372-381.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1957
  • HTML全文浏览量:  637
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 录用日期:  2021-01-28
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回