留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联苯聚芳醚酮-双马来酰亚胺复合树脂的分相行为和流变行为

胡晓兰 严建龙 余荣禄 周玉敬 李伟东 刘刚 益小苏

胡晓兰, 严建龙, 余荣禄, 等. 联苯聚芳醚酮-双马来酰亚胺复合树脂的分相行为和流变行为[J]. 复合材料学报, 2021, 38(8): 2568-2577. doi: 10.13801/j.cnki.fhclxb.20201015.004
引用本文: 胡晓兰, 严建龙, 余荣禄, 等. 联苯聚芳醚酮-双马来酰亚胺复合树脂的分相行为和流变行为[J]. 复合材料学报, 2021, 38(8): 2568-2577. doi: 10.13801/j.cnki.fhclxb.20201015.004
HU Xiaolan, YAN Jianlong, YU Ronglu, et al. Phase separation and rheological behavior of a new biphenyl poly(aryl-ether-ketone)-bismaleimide composite resin[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2568-2577. doi: 10.13801/j.cnki.fhclxb.20201015.004
Citation: HU Xiaolan, YAN Jianlong, YU Ronglu, et al. Phase separation and rheological behavior of a new biphenyl poly(aryl-ether-ketone)-bismaleimide composite resin[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2568-2577. doi: 10.13801/j.cnki.fhclxb.20201015.004

联苯聚芳醚酮-双马来酰亚胺复合树脂的分相行为和流变行为

doi: 10.13801/j.cnki.fhclxb.20201015.004
基金项目: 国家自然科学基金 (21774104;21975210);国防基础科研计划(JCKY2017205C016)
详细信息
    通讯作者:

    胡晓兰,博士,副教授,硕士生导师,研究方向为高性能树脂基复合材料 E-mail:xlhu@xmu.edu.cn

  • 中图分类号: TQ323.7;TB332

Phase separation and rheological behavior of a new biphenyl poly(aryl-ether-ketone)-bismaleimide composite resin

  • 摘要: 离位复合增韧技术是本征脆性的热固性树脂基纤维复合材料提高韧性的有效解决方案,为了更好地结合离位增韧技术和树脂传递模塑(RTM)工艺制备高性能双马来酰亚胺(BMI)树脂基复合材料,本文面向新型热塑性联苯聚芳醚酮(PAEK-B),研究了PAEK-B在BMI树脂及碳纤维复合材料中的分相行为及PAEK-B/BMI复合树脂的流变特性。结果表明,PAEK-B在BMI树脂的注射窗口温度保持一定时间后会发生分相行为,并在RTM工艺制备的碳纤维(CF)/PAEK-B/BMI复合材料中保持了分相结构。BMI树脂的注射温度会影响到PAEK-B在其中的溶解特性,注射温度升高会使BMI树脂的初始黏度变小,但PAEK-B/BMI复合树脂的黏度拐点时间会缩短;PAEK-B/BMI复合树脂符合Winter-Chambon准则,复合树脂的tanδ对频率没有依赖性,且复合树脂的凝胶活化能随着PAEK-B含量的增加逐渐增大。

     

  • 图  1  热塑性树脂联苯聚芳醚酮(PAEK-B) (a) 和酚酞聚芳醚酮(PAEK-C) (b) 的化学分子式和DSC曲线 (c)

    Figure  1.  Chemical molecule of biphenyl polyether ketone (PAEK-B) (a) and phenolphthalein polyaryl ether ketone (PAEK-C) (b), DSC curves (c) of thermoplastic resin

    Tg—Glass transition temperature

    图  2  PAEK-B/双马来酰亚胺(BMI)的在线监测光学显微镜图片

    Figure  2.  Optical microscope pictures for online monitoring phase separation of the PAEK-B/bismaleimide (BMI)

    TP—Thermoplastic resin; TS—Thermoset resin

    图  3  复合树脂浇铸体PAEK-B/BMI ((a), (b))和PAEK-C/BMI ((c), (d)) 的微观形貌SEM图像(THF中72 h刻蚀)

    Figure  3.  SEM images of PAEK-B/BMI ((a), (b)) and PAEK-C/BMI ((c), (d)) composites (Unpolished and in THF for 72 h)

    图  4  CF/PAEK-B/BMI复合材料 ((a), (b)) 和CF/PAEK-C/BMI复合材料 ((c), (d)) 的微观形貌SEM图像

    Figure  4.  SEM images of CF/PAEK-B/BMI composites ((a), (b)) and CF/PAEK-C/BMI composites ((c), (d))

    图  5  BMI树脂的黏度-温度曲线 (a) 与恒温110℃下黏度-时间曲线 (b)

    Figure  5.  Viscosity-temperature curve of BMI resin (a) and its viscosity-time curve at 110℃ (b)

    图  6  复合树脂的黏度-时间曲线:(a) PAEK-B/BMI恒温110℃;(b) PAEK-B/BMI恒温130℃;(c) PAEK-C/BMI恒温110℃

    Figure  6.  Viscosity-time curve of composite resin: (a) PAEK-B/BMI at 110℃; (b) PAEK-B/BMI at 130℃; (c) PAEK-C/BMI at 110℃

    图  7  恒温110℃下BMI树脂 (a) 及不同PAEK-B含量的PAEK-B/BMI复合树脂 (b) 的不同频率的损耗因子tanδ-时间曲线

    Figure  7.  Loss factor tanδ-time curves of different frequencies of BMI resin (a) and PAEK-B/BMI composite resin with different PAEK-B (b) at 110℃

    图  8  不同温度下PAEK-B/BMI 复合树脂的凝胶时间 (a) 及凝胶点模量 (b)

    Figure  8.  Gel time (a) and gel modulus (b) of PAEK-B/BMI composite resin at different temperatures

    图  9  PAEK-B/BMI复合树脂的凝胶时间-温度曲线 (a) 及凝胶活化能与PAEK-B含量关系 (b)

    Figure  9.  Gel time temperature curves of PAEK-B/BMI composite resin (a) and relationship between gel activation energy and PAEK-B content (b)

  • [1] 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6):2-12.

    CHEN Xiangbao, ZHANG Baoyan, XING Liying. Application and development of advanced polymer matrix composites[J]. Materials China,2009,28(6):2-12(in Chinese).
    [2] CHEN B, LI Y, GUAN Q, et al. Preparation and mechanism of shape memory bismaleimide resins with high transition temperature, high toughness and good processability[J]. Journal of Materials Science,2018,53(3):10798-10811.
    [3] IREDALE R J, WARD C, HAMERTON I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides[J]. Progress in Polymer Science,2017,69:1-21. doi: 10.1016/j.progpolymsci.2016.12.002
    [4] 王超, 黄玉东, 张斌. 液体端羧基丁腈橡胶改性双马来酰亚胺结构胶粘剂(Ⅰ)双马来酰亚胺树脂及胶粘剂的合成[J]. 高分子材料科学与工程, 2003, 19(2):86-88. doi: 10.3321/j.issn:1000-7555.2003.02.021

    WANG Chao, HUANG Yudong, ZHANG Bin. CTBN modified BMI construction adhesive (Ⅰ) synthesis of BMI and the adhesive[J]. Polymer Materials Science & Engineering,2003,19(2):86-88(in Chinese). doi: 10.3321/j.issn:1000-7555.2003.02.021
    [5] 杨海冬, 曲春艳, 王德志, 等. 乙烯基橡胶增韧双马来酰亚胺树脂的研究[J]. 化学与黏合, 2014, 36(1):20-23.

    YANG Haidong, QU Chunyan, WANG Dezhi, et al. Study on toughening bismaleimide resin by vinyl rubber[J]. Chemistry and Adhesion,2014,36(1):20-23(in Chinese).
    [6] LIAO Y T, LIN C R, LIU W L. High-performance thermoplastic toughened BMI matrix system. II. Interface study[J]. Journal of Applied Polymer Science,2010,40(11-12):2239-2242.
    [7] SUN Shujun, GUO Miaocai, YI Xiaosu. Phase separation morphology and mode II interlaminar fracture toughness of bismaleimide laminates toughened by thermoplastics with triphenylphosphine oxidegroup[J]. Science China-Technological Sciences,2017,60(3):444-451. doi: 10.1007/s11431-016-0719-4
    [8] LIU X, YU Y, LI S. Viscoelastic phase separation in polyethersulfone modified bismaleimide resin[J]. European Polymer Journal,2006,42(4):835-842. doi: 10.1016/j.eurpolymj.2005.10.004
    [9] 丁妍羽, 贾玉玺, 姚形龙, 等. 聚醚砜-环氧树脂共混体系相分离过程的数值模拟[J]. 复合材料学报, 2018, 35(1):81-88.

    DING Yanyu, JIA Yuxi, YAO Xinglong,et al. Numerical simulation of phase separation processes of polyethersulfone-epoxy resin blend systems[J]. Acta Materiae Compositae Sinica,2018,35(1):81-88(in Chinese).
    [10] GU J W, LIANG C B, DANG J, et al. Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride[J]. RSC Advances,2018,6(42):35809-35814.
    [11] CHENG Q F, BAO J W, PARK J, et al. High mechanical performance composite conductor: Multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Advanced Functional Materials,2009,19(20):3219-3225. doi: 10.1002/adfm.200900663
    [12] 肖杰, 顾轶卓, 李敏, 等. 多壁碳纳米管改性环氧树脂胶黏剂实验研究[J]. 复合材料学报, 2011, 28(3):20-26.

    XIAO Jie, GU Yizhuo, LI Min, et al. Experiment study on epoxy resin adhesive modified by multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2011,28(3):20-26(in Chinese).
    [13] 益小苏, 安学锋, 唐邦铭, 等. 一种提高层状复合材料韧性的方法: 中国, ZL01 100981.0[P]. 2001-03-26.

    YI Xiaosu, AN Xuefeng, TANG bangming, et al. A method to improve the toughness of laminated composites: China, No. ZL01 100981.0[P]. 2001-03-26(in Chinese).
    [14] 益小苏, 安学锋, 唐邦铭, 等. 一种增韧的复合材料层合板及其制备方法: 中国, FP1060809P[P]. 2010-08-04.

    YI Xiaosu, AN Xuefeng, TANG bangming, et al. A toughened composite laminate and its preparation method: China, FP1060809P[P]. 2010-08-04(in Chinese).
    [15] 益小苏, 许亚洪, 程群峰, 等. 层间韧化的碳纤维复合材料层压板的力学性能[J]. 材料研究学报, 2008, 22(4):337-346. doi: 10.3321/j.issn:1005-3093.2008.04.001

    YI Xiaosu, XU Yahong, CHENG Qunfeng, et al. Mechanical properties of interlaminar toughened carbon fiber compo-site laminates[J]. Chinese Journal of Materials Research,2008,22(4):337-346(in Chinese). doi: 10.3321/j.issn:1005-3093.2008.04.001
    [16] 程群峰. 双马来酰亚胺树脂基复合材料的离位增韧研究[D]. 杭州: 浙江大学, 2007.

    CHENG Qunfeng. Studies on toughening composites based on BMI resin by Ex-Situ concept[D]. Hangzhou: Zhejiang University, 2007(in Chinese).
    [17] RATNA D, SIMON G P. Thermomechanical properties and morphology of blends of a hydroxy-functionalized hyperbranched polymer and epoxy resin[J]. Polymer,2001,42(21):8833-8839. doi: 10.1016/S0032-3861(01)00341-X
    [18] QIN H H, MATHER P T, BAEK J B, et al. Modification of bisphenol-A based bismaleimide resin (BPABMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI)[J]. Polymer,2006,47(8):2813-2821. doi: 10.1016/j.polymer.2006.02.062
    [19] CHENG Qunfeng, FANG Zhengping, XU Yahong, et al. Morphological and spatial effects on toughness and impact damage resistance of PAEK-toughened BMI and graphite fiber composite laminates[J]. Chinese Journal of Aeronautics,2009,22:87-96. doi: 10.1016/S1000-9361(08)60073-4
    [20] INOUE T. Reaction-induced phase-decomposition in polymer blends[J]. Progress in Polymer Science,1995,20:119-153. doi: 10.1016/0079-6700(94)00032-W
    [21] CHAMBON F , PETROVIC Z S , MACKNIGHT W J, et al. Rheology of model polyurethanes at the gel point[J]. Macromolecules,1986,19(8):2146-2149. doi: 10.1122/1.549853
    [22] HU X, FAN J. Rheological study of crosslinking and gelation in bismaleimide/cyanate ester interpenetrating polymer network[J]. Journal of Applied Polymer Science,2001,80(13):2437-2445. doi: 10.1002/app.1350
    [23] 张明. 航空RTM树脂的固化行为与相结构-性能关系研究[D]. 北京: 北京航空材料研究所, 2010.

    ZHANG Ming. Study on the relationship between curing behavior and phase structure property of aviation RTM Resin[D]. Beijing: Institute of Aeronautical Materia, 2010(in Chinese).
    [24] MENG J R, HU X, FREDDY Y C, et al. Effect of layered nano-organosilicate on the gel point rheology of bismaleimide/diallylbisphenol A resin[J]. Polymer,2005,46(8):2766-2776. doi: 10.1016/j.polymer.2004.11.087
  • 加载中
图(9)
计量
  • 文章访问数:  888
  • HTML全文浏览量:  333
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 录用日期:  2020-10-04
  • 网络出版日期:  2020-10-15
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回