留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EDC-NHS交联壳聚糖-聚氧化乙烯-丝素蛋白静电纺丝纳米纤维的制备及生物相容性

孙范忱 郭静 杨强 于跃 赵亚博

孙范忱, 郭静, 杨强, 等. EDC-NHS交联壳聚糖-聚氧化乙烯-丝素蛋白静电纺丝纳米纤维的制备及生物相容性[J]. 复合材料学报, 2020, 37(11): 1-8 doi:  10.13801/j.cnki.fhclxb.20200421.002
引用本文: 孙范忱, 郭静, 杨强, 等. EDC-NHS交联壳聚糖-聚氧化乙烯-丝素蛋白静电纺丝纳米纤维的制备及生物相容性[J]. 复合材料学报, 2020, 37(11): 1-8 doi:  10.13801/j.cnki.fhclxb.20200421.002
Fanchen SUN, Jing GUO, Qiang YANG, Yue YU, Yabo ZHAO. Preparation and characterization of biocompatibility of EDC-NHS crosslinked chitosan-polyethyleneoxide-silk fibroin electrospun nanofibers[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200421.002
Citation: Fanchen SUN, Jing GUO, Qiang YANG, Yue YU, Yabo ZHAO. Preparation and characterization of biocompatibility of EDC-NHS crosslinked chitosan-polyethyleneoxide-silk fibroin electrospun nanofibers[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200421.002

EDC-NHS交联壳聚糖-聚氧化乙烯-丝素蛋白静电纺丝纳米纤维的制备及生物相容性

doi: 10.13801/j.cnki.fhclxb.20200421.002
基金项目: 国家自然科学基金(51773024; 51373027);辽宁省科技创新团队项目(LT2017017)
详细信息
    通讯作者:

    郭静,博士,教授,博士生导师,研究方向为高分子材料改性和纤维材料加工成型 E-mail:guojing8161@163.com

  • 中图分类号: TB332

Preparation and characterization of biocompatibility of EDC-NHS crosslinked chitosan-polyethyleneoxide-silk fibroin electrospun nanofibers

  • 摘要: 为提高壳聚糖(CS)-丝素蛋白(SF)复合纳米纤维的可纺性,解决其易溶胀从而导致纳米纤维尺寸稳定性较差的问题,采用聚氧化乙烯(PEO)提高纳米纤维的可纺性,用静电纺丝来制备纳米纤维,然后通过1-(3-二甲基氨基丙基)-3-乙基碳化二亚胺(EDC)和 N-羟基丁二酰亚胺(NHS)进行交联改性,制备了CS-PEO-SF三元体系的纳米纤维。利用FTIR、XRD、单纤维强力机、SEM分别表征了CS-PEO-SF纳米纤维的分子间相互作用、结晶性能、纳米纤维的力学性能和形貌,同时考察纳米纤维的溶胀度;利用细胞毒性和细胞培养测试表征了CS-PEO-SF纳米纤维的生物相容性。结果表明:PEO的加入可以有效提高CS-SF的可纺性,CS-PEO-SF纳米纤维的平均直径范围为240~510 nm,各组分纤维形态较好;随着SF含量的增加,CS-PEO-SF纳米纤维结晶性能、拉伸强度和断裂伸长率逐渐增大。经交联后的CS-PEO-SF纳米纤维结晶能力和溶胀度降低,力学性能提高。交联前后CS-PEO-SF纳米纤维均不具毒性,有良好的细胞相容性。
  • 图  1  碳化二亚胺(EDC)交联反应原理

    Figure  1.  Principle of carbodiimide (EDC) cross-linking reaction

    NHS—N-hydroxysuccinimide

    图  2  交联前后壳聚糖-聚氧化乙烯-丝素蛋白(CS-PEO-SF)纳米纤维的FTIR图谱

    Figure  2.  FTIR spectra of chitosan-polyethylene oxide-silk fibroin (CS-PEO-SF) nanofiber before and after cross-linking

    图  3  CS和交联前后的CS-PEO-SF纳米纤维的XRD图谱

    Figure  3.  XRD patterns of CS and CS-PEO-SF nanofibers before and after cross-linking

    图  4  加入PEO前后CS-SF纳米纤维的SEM图像

    Figure  4.  SEM images of CS-SF nanofibers before and after PEO addition

    图  5  不同SF含量的CS-PEO-SF纳米纤维的SEM图像

    Figure  5.  SEM images of CS-PEO-SF nanofibers with different SF contents

    图  6  不同SF含量CS-PEO-SF纳米纤维力学性能

    Figure  6.  Mechanical properties of different SF content CS-PEO-SF nanofibers

    图  7  不同质量分数EDC交联CS-PEO-SF纳米纤维的溶胀度

    Figure  7.  Swelling degree of cross-linked CS-PEO-SF nanofibers with different mass fractions of EDC

    图  8  CS-PEO-SF纳米纤维的细胞毒性

    Figure  8.  Cytotoxicity of CS-PEO-SF nanofibers

    a—Blank; b—CS-PEO-SF1; c—CS-PEO-SF2; d—CS-PEO-SF4; e—CS-PEO-SF6; f—CS-PEO-SF7

    图  9  CS-PEO-SF纳米纤维体外共培养的SEM图像

    Figure  9.  SEM images of in vitro co-culture of CS-PEO-SF nanofibers

    表  1  纺丝液各成分的质量比

    Table  1.   Mass ratio of each component of spinning solution

    SmapleCSPEOSF
    CS-PEO-SF1 10 1 0
    CS-PEO-SF2 10 1 1
    CS-PEO-SF3 10 1 1.5
    CS-PEO-SF4 10 1 2
    CS-PEO-SF5 10 1 2.5
    CS-PEO-SF6 10 1 3
    CS-PEO-SF7 10 1 3
    Notes: CS is chitosan; PEO is polyethylene oxide; SF is silk fibroin; CS-PEO-SF6 is CS-PEO-SF nanofiber before crosslinking; CS-PEO-SF7 is cross-linked CS-PEO-SF nanofiber.
    下载: 导出CSV

    表  2  细胞增殖率与细胞毒性水平的对应关系

    Table  2.   Correspondence between cell proliferation rate and cytotoxicity level

    Cell proliferation rate/%Cytotoxicity level
    ≥100 0
    75–99 1
    50–74 2
    25–49 3
    1–24 4
    0 5
    下载: 导出CSV

    表  3  CS-PEO-SF纳米纤维的平均直径

    Table  3.   Average diameter of CS-PEO-SF nanofibers

    Mass ratio of CS to SFAverage diameter/μm
    10∶0 0.24
    10∶1.0 0.25
    10∶1.5 0.34
    10∶2.0 0.42
    10∶2.5 0.45
    10∶3.0 0.51
    下载: 导出CSV
  • [1] ALBERTI K A, NEUFEID C I, WANG J, et al. In vivo peripheral nerve repair using tendon-derived nerve guidance conduits[J]. ACS Biomaterials Science <italic>&</italic> Engineering,2016,2(6):937-945.
    [2] QUAST M B, SVIGGUM H P, HANSON A C, et al. Infraclavicular versus axillary nerve catheters: A retrospective comparison of early catheter failure rate[J]. Journal of Clinical Anesthesia,2018,46:79-83. doi:  10.1016/j.jclinane.2018.02.005
    [3] CAI L, LU J, SHEEN V, et al. Lubricated biodegradable polymer networks for regulating nerve cell behavior and fabricating nerve conduits with a compositional gradient[J]. Biomacromolecules,2012,13(2):358-368. doi:  10.1021/bm201372u
    [4] PANG Y, HONG Q, ZHENG J. Sensory reinnervation of muscle spindles after repair of tibial nerve defects using autogenous vein gratis[J]. Chinese Neural Regeneration Research,2014,9(6):610-615. doi:  10.4103/1673-5374.130103
    [5] KARAHALILOGLU K. Electrospun PU-PEG and PU-PC hybrid scaffolds for vascular tissue engineering[J]. Fibers and Polymers,2017,18(11):2135-2145. doi:  10.1007/s12221-017-7368-4
    [6] CAO L, ZHANG F, WANG Q, et al. Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering[J]. Materials Science and Engineering C,2017,79:697-701. doi:  10.1016/j.msec.2017.05.056
    [7] 范田堂, 陈景帝, 刘小翠, 等. Fe<sub>3</sub>O<sub>4</sub>-壳聚糖-胶原-纳米羟基磷灰石原位复合支架的仿生制备及表征[J]. 复合材料学报, 2017, 34(11):215-219.

    FAN T T, CHEN J D, LIU X C, et al. Biomimetic preparation and characterization of Fe<sub>3</sub>O<sub>4</sub>-chitosan-collagen-nanohydroxyapatite in-situ composite scaffolds[J]. Acta Materiae Compositae Sinica,2017,34(11):215-219(in Chinese).
    [8] OLARU A M, MARIN L, MORARIU S, et al. Biocompatible chitosan based hydrogels for potential application in local tumour therapy[J]. Carbohydrate Polymers,2018,179:59-70. doi:  10.1016/j.carbpol.2017.09.066
    [9] DANANIAYA S H S, UDAYANGANI R M C, OH C, et al. Green synthesis, physio-chemical characterization and anti-candidal function of a biocompatible chitosan gold nanocomposite as a promising antifungal therapeutic agent[J]. RSC Advances,2017,7(15):9182-9193.
    [10] DENG A, KANG X, ZHANG J, et al. Enhanced gelation of chitosan-β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated[J]. Materials Science and Engineering C,2017,78:1147-1154. doi:  10.1016/j.msec.2017.04.109
    [11] ASIABI M, MEHDINIA A, JABBARI A. Electrospun biocompatible Chitosan-MIL-101(Fe) composite nanofibers for solid-phase extraction of Δ9-tetrahydrocannabinol in whole blood samples using Box-Behnken experimental design[J]. Journal of Chromatography A,2017,1479:71-80. doi:  10.1016/j.chroma.2016.12.024
    [12] 边瑞琦, 王利君, 熊杰. Genipin交联丝素蛋白纳米纤维膜的制备与性能[J]. 复合材料学报, 2013, 30(2):89-94.

    BIAN R Q, WANG L J, XIONG J. Preparation and properties of Genipin cross-linked silk fibroin nanofiber membrane[J]. Acta Materiae Compositae Sinica,2013,30(2):89-94(in Chinese).
    [13] 祝国富, 张鸿, 李会涛, 等. 化学交联改性丝素蛋白-海藻酸钠纤维的制备与性能[J]. 复合材料学报, 2017, 34(11):193-201.

    ZHU G F, ZHANG H, LI H T, et al. Preparation and properties of chemical cross-linked modified silk fibroin-alginate fibers[J]. Acta Materiae Compositae Sinica,2017,34(11):193-201(in Chinese).
    [14] JOHARI N, HOSSEINI H R M, TAROMI N, et al. Evaluation of bioactivity and biocompatibility of silk fibroin-TiO<sub>2</sub>, nanocomposite[J]. Journal of Medical <italic>&</italic> Biological Engineering,2018,38(1):99-105.
    [15] AHIRE J J, ROBERTSON D D, RENEN A J, et al. Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes[J]. Biomedicine <italic>&</italic> Pharmacotherapy,2017,86:143-148.
    [16] LI X, HYUN K. Rheological study of the effect of polyethylene oxide (PEO) homopolymer on the gelation of PEO-PPO-PEO triblock copolymer in aqueous solution[J]. Korea-Australia Rheology Journal,2018,30(2):109-125. doi:  10.1007/s13367-018-0012-z
    [17] KIM D, CHOI G J, SEUNGHO B, et al. Characterization of anti-adhesion properties of alginate-polyethylene oxide film to reduce postsurgical peritoneal adhesions[J]. Science of Advanced Materials,2017,9(9):1669-1677. doi:  10.1166/sam.2017.3166
    [18] SUROV O V, VORONOVA M I, AFINEEVSKII A V, et al. Polyethylene oxide films reinforced by cellulose nanocrystals: Microstructure-properties relationship[J]. Carbohydrate Polymers,2018,181:489-498.
    [19] LU C, CHIANG S W, DU H, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO)[J]. Polymer,2017,115:52-59. doi:  10.1016/j.polymer.2017.02.024
    [20] 黄晨. 静电纺管状支架的制备及其在组织工程中的应用[D]. 上海: 东华大学, 2013.

    HUANG C. Preparation of electrospun tubular scaffold and its application in tissue engineering[D]. Shanghai: Donghua University, 2013(in Chinese).
    [21] WU C N, FUH S C, LIN S P, et al. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing[J]. Biomacromolecules,2018,19(2):544-554. doi:  10.1021/acs.biomac.7b01660
    [22] 许乐. 壳聚糖/聚氧化乙烯电纺复合膜的制备及性能研究[D]. 上海: 东华大学, 2011.

    XU L. Study on preparation and properties of chitosan/polyethylene oxide electrospun composite film[D]. Shanghai: Donghua University, 2011(in Chinese).
    [23] 王迎军, 杨春蓉, 汪凌云, 等. EDC-NHS交联对胶原物理化学性能的影响[J]. 华南理工大学学报 (自然科学版), 2007, 35(12):66-70.

    WANG Y J, YANG C R, WANG L Y, et al. Effects of EDC-NHS cross-linking on the physicochemical properties of collagen[J]. Journal of South China University of Technology (Natural Science Edition),2007,35(12):66-70(in Chinese).
  • [1] 汤龙其, 令旭霞, 王士华, 郭帅, 龙柱.  聚吡咯/碳纤维纸电热复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1426-1433. doi: 10.13801/j.cnki.fhclxb.20191021.002
    [2] 黄慧玲, 张隐, 甘露, 潘明珠.  Ag-ZnO/生物质炭纳米复合材料的制备及协同可见光催化性能, 复合材料学报. 2020, 37(5): 1148-1155. doi: 10.13801/j.cnki.fhclxb.20190801.001
    [3] 丁一宁, 马跃, 郝晓卫.  基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响, 复合材料学报. 2020, 37(): 1-9.
    [4] 王继华, 柳军旺, 王春锋, 王永亮, 韩志东.  聚偏氟乙烯基复合材料的制备及介电性能, 复合材料学报. 2020, 37(): 1-9.
    [5] 周文英, 张财华, 李旭, 张帆, 张祥林.  基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能, 复合材料学报. 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
    [6] 于翔, 董献辉, 桂久青, 张雪寅, 宋子豪, 李玥.  Ag对TiO2@Ag/聚偏氟乙烯复合薄膜性能的影响, 复合材料学报. 2020, 37(7): 1555-1561. doi: 10.13801/j.cnki.fhclxb.20191128.001
    [7] 汪继承, 雷中秋, 王振, 曹志海, 戚栋明, 黄骅隽.  硅烷偶联剂MPS对SiO2-聚丙烯酸酯复合微球接枝交联结构及剪切取向能力的影响, 复合材料学报. 2020, 37(5): 1096-1105. doi: 10.13801/j.cnki.fhclxb.20190719.001
    [8] 钱晓明, 魏楚, 钱幺, 刘永胜, 王立晶.  空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能, 复合材料学报. 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001
    [9] 管宇鹏, 齐晓俊, 李帅, 贺莹莹, 刘红霞.  Pickering乳液技术制备纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯电磁屏蔽复合材料, 复合材料学报. 2020, 37(8): 1875-1883. doi: 10.13801/j.cnki.fhclxb.20191226.001
    [10] 张明艳, 杨振华, 吴子剑, 王登辉, 刘居, 杨镕琛.  新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能, 复合材料学报. 2020, 37(5): 1024-1032. doi: 10.13801/j.cnki.fhclxb.20190923.001
    [11] 闫艳红, 王腾彬, 吴子健, 卢欢, 贾志宁.  基于正交设计的纳米蛇纹石-纳米氧化镧/聚四氟乙烯复合材料在沙尘环境下的摩擦学性能, 复合材料学报. 2020, 37(7): 1522-1530. doi: 10.13801/j.cnki.fhclxb.20191024.001
    [12] 阳雄南, 张效林, 聂孙建, 王哲, 卓光铭, 李少歌.  不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响, 复合材料学报. 2020, 37(5): 1033-1040. doi: 10.13801/j.cnki.fhclxb.20190902.002
    [13] 黄露露, 张艳玲, 王挺, 吴礼光, 董春颖.  弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建, 复合材料学报. 2020, 37(): 1-10.
    [14] 顾升, 王雪, 徐国祺.  基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料, 复合材料学报. 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
    [15] 杨云强, 张佳丽, 章海霞, 侯莹.  聚3,4-乙烯二氧噻吩/纳米多孔金复合电极的制备及其在超级电容器中的应用, 复合材料学报. 2020, 37(12): 1-9.
    [16] 周可可, 唐亚丽, 卢立新, 潘嘹, 丘晓琳.  氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能, 复合材料学报. 2020, 37(7): 1657-1666. doi: 10.13801/j.cnki.fhclxb.20191120.003
    [17] 陈博, 房轶群, 司月月, 王奉强, 邵博, 宋永明, 王清文.  胶合板表面层层自组装聚磷酸铵-纳米氮化硼/壳聚糖薄膜及其阻燃性能, 复合材料学报. 2020, 37(): 1-10.
    [18] 马跃, 郭静, 赵秒, 宫玉梅.  乙二醇二缩水甘油醚原位交联纤维素-磷虾蛋白复合纤维的结构与性能, 复合材料学报. 2020, 37(5): 1156-1166. doi: 10.13801/j.cnki.fhclxb.20190923.002
    [19] 杨强, 郭静, 刘树兴, 孙范忱, 陈双.  电纺壳聚糖-聚乳酸复合神经导管的分子作用及其生物活性表征, 复合材料学报. 2020, 37(): 1-9.
    [20] 张钊滟, 马帅, 卢鑫, 郑玉婴, 林腾飞.  壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200302.002
  • 加载中
计量
  • 文章访问数:  169
  • HTML全文浏览量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 录用日期:  2019-02-02
  • 网络出版日期:  2020-04-21

目录

    /

    返回文章
    返回