留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩纤维平纹织物约束建筑固体废弃物颗粒力学性能及吸能特性

周宏元 于鸿鑫 王小娟 石南南

周宏元, 于鸿鑫, 王小娟, 等. 玄武岩纤维平纹织物约束建筑固体废弃物颗粒力学性能及吸能特性[J]. 复合材料学报, 2022, 39(2): 695-706. doi: 10.13801/j.cnki.fhclxb.20210420.003
引用本文: 周宏元, 于鸿鑫, 王小娟, 等. 玄武岩纤维平纹织物约束建筑固体废弃物颗粒力学性能及吸能特性[J]. 复合材料学报, 2022, 39(2): 695-706. doi: 10.13801/j.cnki.fhclxb.20210420.003
ZHOU Hongyuan, YU Hongxin, WANG Xiaojuan, et al. Mechanical properties and energy absorption characteristics of basalt fiber plain woven fabric constrained building solid waste particles[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 695-706. doi: 10.13801/j.cnki.fhclxb.20210420.003
Citation: ZHOU Hongyuan, YU Hongxin, WANG Xiaojuan, et al. Mechanical properties and energy absorption characteristics of basalt fiber plain woven fabric constrained building solid waste particles[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 695-706. doi: 10.13801/j.cnki.fhclxb.20210420.003

玄武岩纤维平纹织物约束建筑固体废弃物颗粒力学性能及吸能特性

doi: 10.13801/j.cnki.fhclxb.20210420.003
基金项目: 国家重点研发计划(2019YFD1101005);国家自然科学基金(51808017;51778028);北京市教委科技计划一般项目(KM201810005019)
详细信息
    通讯作者:

    王小娟,博士,副教授,博士生导师,研究方向为建筑材料力学性能 E-mail: xiaojuanwang@bjut.edu.cn

  • 中图分类号: TB301, TB332

Mechanical properties and energy absorption characteristics of basalt fiber plain woven fabric constrained building solid waste particles

  • 摘要: 为探索建筑固体废弃物再利用的新方式,提出玄武岩纤维平纹织物约束建筑废弃物散体颗粒组合结构,并采用准静态单轴压缩试验对其力学性能、吸能特性等方面进行研究。研究分别讨论了建筑固体废弃物颗粒种类、建筑固体废弃物颗粒的粒径级别、玄武岩平纹织物约束层数对其响应过程、破坏形式、荷载传递、能量吸收的影响,结果表明:单层玄武岩纤维平纹织物约束下建筑废弃砖渣颗粒的峰值荷载(16.54~27.89 kN)和混凝土颗粒的峰值荷载(17.99~32.33 kN)均随着粒径的增大而降低;与建筑废弃混凝土颗粒相比,虽然建筑废弃砖渣颗粒各粒径级别下峰值荷载较低,但其各粒径级别均具有更稳定的平台段(平台应力范围为0.87~1.26 MPa)与明显的压实应变(约为0.3),是理想的吸能结构;此外,增加玄武岩纤维织物层数可显著提高建筑废弃砖渣颗粒的峰值荷载与比吸能,但由于无平台阶段和明显压实应变,并非理想吸能结构。

     

  • 图  1  建筑固体废弃物颗粒

    Figure  1.  Building solid waste particles

    图  2  玄武岩纤维平纹织物约束建筑固体废弃物颗粒试件

    Figure  2.  Specimen of building solid waste particles confined by basalt fiber plain woven fabric

    PVC—Polyvinyl chloride

    图  3  单轴准静态压缩试验

    Figure  3.  Uni-axial quasi-static compression test

    图  4  单层玄武岩平纹织物约束废弃混凝土颗粒各粒径级别荷载-位移曲线

    Figure  4.  Load-displacement curves of each particle size grade of single-layer basalt plain woven constrained waste concrete particles

    图  5  单层玄武岩平纹织物约束废弃砖渣颗粒各粒径级别荷载-位移曲线

    Figure  5.  Load-displacement curves of each particle size grade of single-layer basalt plain weave constrained waste brick particles

    图  6  玄武岩纤维平纹织物约束建筑固体废弃物颗粒变形过程

    Figure  6.  Deformation process of basalt plain woven fabric constrained building solid waste particles

    图  7  单层约束1.18 mm建筑固体废弃物荷载-位移曲线

    Figure  7.  Load-displacement curve of single-layer constrained 1.18 mm building solid waste particles

    图  8  1.18 mm级废弃砖渣颗粒不同约束层数荷载-位移曲线

    Figure  8.  Load-displacement curves of different constrained layers of 1.18 mm waste brick particles

    图  9  2.36 mm级废弃砖渣颗粒不同约束层数荷载-位移曲线

    Figure  9.  Load-displacement curvse of different constrained layers of 2.36 mm waste brick particles

    图  10  1.18 mm级废弃砖渣颗粒三层约束荷载-位移曲线

    Figure  10.  Load-displacement curve of three-layer constrained 1.18 mm waste brick particles

    图  11  单层玄武岩纤维平纹织物约束建筑废弃物颗粒破坏模式

    Figure  11.  Failure modes of single-layer basalt fiber plain woven fabric constrained building waste particles

    图  12  多层玄武岩纤维平纹织物约束废弃砖渣颗粒破坏模式

    Figure  12.  Failure modes of multi-layer basalt fiber plain woven fabric constrained waste brick particles

    图  13  单层玄武岩纤维平纹织物约束建筑固体废弃物峰值荷载

    Figure  13.  Peak load of single-layer basalt fiber plain woven fabric constrained building waste particles

    图  14  多层玄武岩纤维平纹织物约束废弃砖渣颗粒峰值荷载

    Figure  14.  Peak load of multi-layer basalt fiber plain woven fabric constrained waste brick particles

    图  15  单层玄武岩纤维平纹织物约束废弃砖渣颗粒应变与能量吸收效率关系

    Figure  15.  Relationship between strain and energy absorption efficiency of single-layer basalt fiber plain woven fabric constrained waste brick particles

    图  16  单层玄武岩纤维平纹织物约束废弃混凝土颗粒应变与能量吸收效率关系

    Figure  16.  Relationship between strain and energy absorption efficiency of single-layer basalt fiber plain woven fabric constrained waste concrete particles

    图  17  多层玄武岩纤维平纹织物约束废弃砖渣颗粒应变与能量吸收效率

    Figure  17.  Relationship between strain and energy absorption efficiency of multi-layer basalt fiber plain woven fabric constrained waste brick particles

    图  18  单层玄武岩纤维平纹织物约束建筑固体废弃物应变与比吸能关系

    Figure  18.  Relationship between strain and specific energy absorption of building solid waste particles constrained by single-layer basalt fiber plain woven fabric

    图  19  多层玄武岩纤维平纹织物约束废弃砖渣颗粒应变与比吸能关系

    Figure  19.  Relationship between strain and specific energy absorption of waste brick particles constrained by multi-layer basalt fiber plain woven fabric

    表  1  玄武岩平纹织物性能参数

    Table  1.   Performance parameters of basalt plain woven fabric

    Surface density/
    (g·m−2)
    Number of
    yarn/(cm×cm)
    Yarn specification/
    tex
    Tensile
    strength/MPa
    Elongation
    at break/%
    Modulus of
    elasticity/GPa
    200 10×10 100 2000 2.5 80
    下载: 导出CSV

    表  2  建筑固体废弃物颗粒性能参数

    Table  2.   Performance parameters of building solid waste particles

    Particle size
    grade/mm
    Type of
    particles
    Apparent density/
    (g·cm−3)
    Stacking density/
    (g·cm−3)
    Porosity/%Crush
    index/%
    Internal friction
    angle/(°)
    Coefficient of friction
    with basalt fiber
    plain woven fabric
    0.6 Waste brick particles 2.34 1.26 46.38 17.6 37.16 0.73
    Waste concrete particles 2.31 1.32 42.86 5.4 39.02 0.72
    1.18 Waste brick particles 2.33 1.20 48.50 26.7 39.11 0.68
    Waste concrete particles 2.45 1.39 43.26 11.3 41.36 0.66
    2.36 Waste brick particles 2.33 1.15 50.64 29.6 41.67 0.65
    Waste concrete particles 2.55 1.44 43.52 12.0 42.44 0.64
    4.75 Waste brick particles 2.32 1.13 51.29 36.7 42.77 0.63
    Waste concrete particles 2.54 1.41 44.48 14.1 44.76 0.62
    Note: Each particle size grade is the remaining particles on the sieve of the size.
    下载: 导出CSV

    表  3  玄武岩纤维平纹织物约束建筑固体废弃物颗粒试件汇总

    Table  3.   Summarization of basalt fiber plain woven fabric constrained building solid waste particles specimens

    Sample indexNumber of layersParticle size grade/mmType of particlesEnergy absorbing material average quality/g
    1-WBP-0.60 1 0.60 Waste brick particles 2375.73
    1-WCP-0.60 Waste concrete particles 2449.26
    1-WBP-1.18 1.18 Waste brick particles 2262.60
    1-WCP-1.18 Waste concrete particles 2579.14
    1-WBP-2.36 2.36 Waste brick particles 2133.82
    1-WCP-2.36 Waste concrete particles 2671.92
    1-WBP-4.75 4.75 Waste brick particles 2096.71
    1-WCP-4.75 Waste concrete particles 2616.25
    2-WBP-1.18 2 1.18 Waste brick particles 2274.83
    2-WBP-2.36 2.36 Waste brick particles 2145.42
    3-WBP-1.18 3 1.18 Waste brick particles 2276.92
    3-WBP-2.36 2.36 Waste brick particles 2157.61
    Notes: In the sample index, the first number represents the number of basalt plain woven fabric layers; The letters indicate the type of the building solid waste, e.g. WBP for waste brick particles and WCP for waste concrete particles; The second number presents the particle size grade of the building solid waste.
    下载: 导出CSV

    表  4  不同颗粒深度时建筑废弃颗粒横向应力${\sigma _{xx}}$对比

    Table  4.   Comparison of transverse stress ${\sigma _{xx}}$ of building waste particles at different particle depths

    40 mm60 mm80 mm
    1-WBP-4.75 0.167$Q$ 0.157$Q$ 0.147$Q$
    1-WBP-2.36 0.174$Q$ 0.163$Q$ 0.152$Q$
    1-WBP-1.18 0.191$Q$ 0.176$Q$ 0.163$Q$
    1-WBP-0.60 0.205$Q$ 0.186$Q$ 0.169$Q$
    1-WCP-4.75 0.151$Q$ 0.143$Q$ 0.135$Q$
    1-WCP-2.36 0.166$Q$ 0.156$Q$ 0.146$Q$
    1-WCP-1.18 0.173$Q$ 0.161$Q$ 0.151$Q$
    1-WCP-0.60 0.192$Q$ 0.176$Q$ 0.161$Q$
    Note: Q—Vertical load strength.
    下载: 导出CSV

    表  5  单层玄武岩纤维平纹织物约束废弃砖渣颗粒平台应力与压实应变

    Table  5.   Plateau stress and compaction strain of waste brick particles constrained by single-layer basalt fiber plain woven fabric

    Particle size grade/mm0.601.182.364.75
    Plateau stress/MPa1.261.080.990.87
    Densification strain0.290.310.300.31
    下载: 导出CSV
  • [1] 叶胜兰. 我国建筑垃圾综合利用的现状及发展趋势[J]. 绿色科技, 2018(18):124-127.

    YE Shenglan. Analysis on the present situation and treatment of comprehensive utilization of construction waste[J]. Journal of Green Science and Technology,2018(18):124-127(in Chinese).
    [2] 曹万林, 肖建庄, 叶涛萍, 等. 钢筋再生混凝土结构研究进展及其工程应用[J]. 建筑结构学报, 2020, 41(12):1-16, 27.

    CAO Wanlin, XIAO Jianzhuang, YE Taoping, et al. Research progress and engineering application of reinforced recycled aggregate concrete structure[J]. Journal of Building Structures,2020,41(12):1-16, 27(in Chinese).
    [3] 曹万林, 尹海鹏, 张建伟, 等. 再生混凝土框架结构抗震性能试验研究[J]. 北京工业大学学报, 2011, 37(2):191-198.

    CAO Wanlin, YIN Haipeng, ZHANG Jianwei, et al. Seismic behavior experiment of recycled concrete frame structures[J]. Journal of Beijing University of Technology,2011,37(2):191-198(in Chinese).
    [4] 肖建庄, 兰阳. 再生混凝土单轴受拉性能试验研究[J]. 建筑材料学报, 2006(2):154-158. doi: 10.3969/j.issn.1007-9629.2006.02.005

    XIAO Jianzhuang, LAN Yang. Investigation on the tensile behavior of recycled aggregate concrete[J]. Journal of Building Materials,2006(2):154-158(in Chinese). doi: 10.3969/j.issn.1007-9629.2006.02.005
    [5] 肖建庄, 周正久, 马修斯. 再生骨料混凝土板冲切性能试验[J]. 同济大学学报(自然科学版), 2015, 43(1):41-46, 53.

    XIAO Jianzhuang, ZHOU Zhengjiu, MA Xiusi. Test on punching behavior of recycled aggregate concrete slabs[J]. Journal of Tongji University (Natural Science),2015,43(1):41-46, 53(in Chinese).
    [6] 梁炯丰, 何春锋, 王长诚, 等. 再生废砖粗骨料混凝土基本力学性能研究[J]. 混凝土, 2014(4):56-58. doi: 10.3969/j.issn.1002-3550.2014.04.017

    LIANG Jiongfeng, HE Chunfeng, WANG Changcheng, et al. Experimental research on the basic mechanical properties of recycled waste brick coarse aggregate concrete[J]. Concrete,2014(4):56-58(in Chinese). doi: 10.3969/j.issn.1002-3550.2014.04.017
    [7] 孔祥清, 何文昌, 邢丽丽, 等. 钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响[J]. 复合材料学报, 2020, 37(7):1763-1773.

    KONG Xiangqing, HE Wenchang, XING Lili, et al. Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica,2020,37(7):1763-1773(in Chinese).
    [8] 高丹盈, 景嘉骅, 周潇. 混杂纤维增强再生砖骨料混凝土增强机制与抗压性能计算方法[J]. 复合材料学报, 2018, 35(12):3441-3449.

    GAO Danying, JING Jiahua, ZHOU Xiao. Reinforcing mechanism and calculation method of compressive behavior of hybrid fiber reinforced recycled brick aggregates concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3441-3449(in Chinese).
    [9] 肖杰, 马海峰, 吴超凡, 等. 建筑固废弃物再生粒料基层混合料的性能研究[J]. 建筑材料学报, 2018, 21(3):511-515, 522. doi: 10.3969/j.issn.1007-9629.2018.03.026

    XIAO Jie, MA Haifeng, WU Chaofan, et al. Study on performance of construction and demolition waste recycled aggregate base mixture[J]. Journal of Building Materials,2018,21(3):511-515, 522(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.03.026
    [10] XUAN D X, MOLENAAR A, HOUBEN L J M. Evaluation of cement treatment of reclaimed construction and demolition waste as road bases[J]. Journal of Cleaner Production,2015,100:77-83. doi: 10.1016/j.jclepro.2015.03.033
    [11] POON C S, CHAN D X. Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base[J]. Construction and Building Materials,2006,20(8):578-585. doi: 10.1016/j.conbuildmat.2005.01.045
    [12] ZHAO Z, LIU C S, BROGLIATO B. Energy dissipation and dispersion effects in granular media[J]. Physical Review E,2008,78(3):031307.
    [13] 陆坤权, 刘寄星. 颗粒物质(上)[J]. 物理, 2004(9):629-635. doi: 10.3321/j.issn:0379-4148.2004.09.002

    LU Kunquan, LIU Jixing. Static and dynamic properties of granular matter (Ⅰ)[J]. Physics,2004(9):629-635(in Chinese). doi: 10.3321/j.issn:0379-4148.2004.09.002
    [14] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报, 2008(8):4667-4674. doi: 10.3321/j.issn:1000-3290.2008.08.007

    SUN Qicheng, WANG Guangqian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica,2008(8):4667-4674(in Chinese). doi: 10.3321/j.issn:1000-3290.2008.08.007
    [15] 陈俊生, 莫海鸿, 刘叔灼, 等. 土工模袋砂单轴抗压强度试验研究[J]. 岩石力学与工程学报, 2014, 33(S1):2930-2935.

    CHEN Junsheng, MO Haihong, LIU Shuzhuo, et al. Experimental study of uniaxial compressive srength on geomembrane bag with sand[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(S1):2930-2935(in Chinese).
    [16] MATSUOKA H, LIU S. New earth reinforcement method by soilbag[J]. Soils and Foundations,2003,43(6):173-188.
    [17] 魏晨, 郭荣辉. 玄武岩纤维的性能及应用[J]. 纺织科学与工程学报, 2019, 36(3):89-94. doi: 10.3969/j.issn.2096-5184.2019.03.018

    WEI Chen, GUO Ronghui. Properties and application of basalt fiber[J]. Journal of Textile Science and Engineering,2019,36(3):89-94(in Chinese). doi: 10.3969/j.issn.2096-5184.2019.03.018
    [18] 欧阳利军, 许峰, 高皖扬, 等. 玄武岩纤维布约束高温损伤混凝土方柱轴压力学性能试验[J]. 复合材料学报, 2019, 36(2):469-481.

    OUYANG Lijun, XU Feng, GAO Wanyang, et al. Axial compressive behavior of post-heated square concrete columns wrapped by BFRP sheets: An experimental investigation[J]. Acta Materiae Compositae Sinica,2019,36(2):469-481(in Chinese).
    [19] 王庆轩, 丁一宁. 玄武岩纤维网格布增强混凝土板双向弯曲性能试验[J]. 复合材料学报, 2020, 37(5):1200-1210.

    WANG Qingxuan, DING Yining. Experiment on biaxial flexural behaviors of basalt fiber textile reinforced concrete slab[J]. Acta Materiae Compositae Sinica,2020,37(5):1200-1210(in Chinese).
    [20] 中国国家标准化管理委员会. 建筑用砂: GB/T 14684—2011[S]. 北京: 中国标准出版社, 2011.

    Standardization Administration of the People’s Republic of China. Sand for construction: GB/T 14684—2011[S]. Beijing: China Standards Press, 2011(in Chinese).
    [21] SPERL M. Experiments on corn pressure in silo cells-translation and comment of Janssen’s paper from 1895[J]. Granular Matter, 2006, 8(2): 59–65.
    [22] 中华人民共和国住房与城乡建设部, 粮食钢板筒仓设计标准: GB 50322—2011[S]. 北京: 中国标准出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of grain steel silos: GB 50322—2011[S]. Beijing: China Standards Press, 2011(in Chinese).
    [23] 李智峰, 彭政, 蒋亦民. 粮仓内颗粒压力的测量: Janssen行为及其偏差[J]. 物理学报, 2014, 63(10):296-303.

    LI Zhifeng, PENG Zheng, JIANG Yimin. Measurements of granular pressure in silo: Janssen behaviour and deviation[J]. Acta Physica Sinica,2014,63(10):296-303(in Chinese).
    [24] 宗谨, 周志刚, 王文广, 等. 颗粒固体应力转向比的光弹法探测[J]. 物理学报, 2017, 66(10):177-184.

    ZONG Jin, ZHOU Zhigang, WANG Wenguang, et al. Janssen ratio in granular solid measured by photoelastic method[J]. Acta Physica Sinica,2017,66(10):177-184(in Chinese).
    [25] TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam[J]. Materials Science and Technology,2002,18(5):480-488. doi: 10.1179/026708302225002092
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  819
  • HTML全文浏览量:  428
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 修回日期:  2021-04-06
  • 录用日期:  2021-04-16
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回