留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯负载无纺布复合膜的制备及光热转换性能

李成欣 高助威 刘钟馨 褚镇 高睿彤 王世豪 韩欣彤

李成欣, 高助威, 刘钟馨, 等. 氧化石墨烯负载无纺布复合膜的制备及光热转换性能[J]. 复合材料学报, 2021, 38(12): 4255-4264. doi: 10.13801/j.cnki.fhclxb.20210304.001
引用本文: 李成欣, 高助威, 刘钟馨, 等. 氧化石墨烯负载无纺布复合膜的制备及光热转换性能[J]. 复合材料学报, 2021, 38(12): 4255-4264. doi: 10.13801/j.cnki.fhclxb.20210304.001
LI Chengxin, GAO Zhuwei, LIU Zhongxin, et al. Preparation of graphene oxide supported non-woven fabric composite membrane and its photothermal conversion performance[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4255-4264. doi: 10.13801/j.cnki.fhclxb.20210304.001
Citation: LI Chengxin, GAO Zhuwei, LIU Zhongxin, et al. Preparation of graphene oxide supported non-woven fabric composite membrane and its photothermal conversion performance[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4255-4264. doi: 10.13801/j.cnki.fhclxb.20210304.001

氧化石墨烯负载无纺布复合膜的制备及光热转换性能

doi: 10.13801/j.cnki.fhclxb.20210304.001
基金项目: 海南省自然科学基金(520QN228);海南省科协青年科技英才创新计划项目(QCXM202027);江苏省绿色过程装备重点实验室开放课题(GPE202101);海南大学科研启动基金(KYQD(ZR)20042)
详细信息
    通讯作者:

    高助威,博士,讲师,硕士生导师,研究方向为石油化工及新能源、光热转换新材料的应用 E-mail:gaozhuwei@hainanu.edu.cn

  • 中图分类号: TB34; TQ342.8

Preparation of graphene oxide supported non-woven fabric composite membrane and its photothermal conversion performance

  • 摘要: 氧化石墨烯(GO)是一种性能良好的光热转换材料,广泛用于海水淡化、光电转换和太阳能利用等领域。为了测试GO负载无纺布膜(GO膜)和聚乙烯醇-氧化石墨烯无纺布复合膜(PVA-GO复合膜)的光热水蒸发特性,通过改进Hummers方法制备GO,选取了纤维素和聚酯类型的无纺布,通过浸泡-超声法制得GO膜和PVA-GO复合膜。运用紫外-可见-近红外光谱仪分析了GO膜和PVA-GO复合膜的吸光性能,并通过电子天平测量GO膜和PVA-GO复合膜的蒸发水量。由于PVA具有亲水性,能增大膜的吸水性,因而PVA加入会使蒸发水量增大。通过SEM分析GO膜和PVA-GO复合膜表面特征,发现无添加PVA的GO膜是纤维丝状结构,且纤维清晰可见。加入PVA后,纤维被PVA包裹,说明膜对光的吸收能力增强。当加入6wt% PVA时,无纺布纤维被PVA完全包裹。当用氙灯对两种膜进行水蒸发实验时,GO膜的蒸发速率达到了1.67 kg/(m2·h),PVA-GO复合膜的蒸发速率达到了1.85 kg/(m2·h)。此外,GO膜中出现GO层状结构,在紫外-可见-近红外光谱分析中表现出较好的吸光能力,在光热蒸发实验中表现出较好的光热转换能力。PVA-GO复合膜在PVA质量浓度为4wt%时有较好的光热转换性能和吸光性。

     

  • 图  1  氧化石墨烯无纺布复合膜(GO膜)实验室制备过程

    Figure  1.  Preparation process of graphene oxide supported non-woven fabric film (GO film) membrane laboratory

    图  2  无纺布 (a)、湿润下的GO膜 (b) 和干燥后的GO膜 (c) 三种状态实物图

    Figure  2.  Pictures of non-woven fabric (a), wet GO film (b) and dry GO film (c)

    图  3  聚乙烯醇(PVA)浓度为2wt%(a)、4wt%(b)、6wt%(c)的PVA-GO膜的三种状态实物图

    Figure  3.  Polyvinyl alcohol (PVA)-GO films with PVA concentrations of 2wt%(a), 4wt%(b), 6wt%(c) in three states

    图  4  无纺布SEM图像及放大结果

    Figure  4.  SEM images of non-woven fabric and magnification results

    图  5  GO膜SEM图像及放大结果

    Figure  5.  SEM images of GO films and magnification results

    图  6  PVA浓度为2wt% ((a), (b))、4wt% ((c), (d))、6wt% ((e), (f)) 的PVA-GO膜的SEM图像及放大结果

    Figure  6.  SEM images and magnification results of PVA-GO film with PVA concentration of 2wt% ((a), (b)), 4wt% ((c), (d)), 6wt% ((e), (f))

    图  7  无纺布、GO膜及三种PVA-GO膜的紫外可见光谱

    Figure  7.  UV-Visible spectra of non-woven fabric, GO film and three PVA-GO films

    图  8  GO膜在实验开始表面温度 (a)、10 min后表面温度 (b)、30 min后表面温度 (c);2wt%PVA-GO膜在实验开始表面温度 (d)、10 min后表面温度 (e)、30 min后表面温度 (f);4wt%PVA-GO膜在实验开始表面温度 (g)、10 min后表面温度 (h)、30 min后表面温度 (i);6wt%PVA-GO膜在实验开始表面温度 (j)、10 min后表面温度 (k)、30 min后表面温度 (l) 的红外成像仪图

    Figure  8.  Infrared imager images: Surface temperature of GO film at the beginning (a), after 10 min (b), after 30 min (c); Surface temperature of 2wt%PVA-GO film at the beginning (d), after 10 min (e), after 30 minutes (f); Surface temperature of 4wt%PVA-GO film at the beginning (g) after 10 minutes (h), after 30 minutes (i); Surface temperature of 6wt%PVA at the beginning (j) after 10 min (k), after 30 min (l)

    图  9  GO膜和三种PVA-GO膜蒸发水的损失质量

    Figure  9.  Loss of evaporation water of GO film and three kinds of PVA-GO films

    图  10  GO膜和三种PVA-GO膜的水蒸发速率

    Figure  10.  Water evaporation rates of GO film and three PVA-GO films

    图  11  GO膜和三种PVA-GO膜的光热转化效率

    Figure  11.  Photothermal conversion efficiency of GO film and three kinds of PVA-GO films

    表  1  实验原材料及试剂

    Table  1.   Laboratory raw materials and reagen

    Reagent name SpecificationReagent manufacturer
    Hydrochloric acid Analytical pure Guangzhou Chemical Reagent Factory
    Concentrated sulfuric acid Analytical pure Guangzhou Chemical Reagent Factory
    Hydrogen peroxide Analytical pure Guangzhou Chemical Reagent Factory
    Potassium permanganate Analytical pure Guangzhou Chemical Reagent Factory
    Polyvinyl alcohol Analytical pure Shanghai Aladdin Biochemical Technology Company
    Graphite powder >149 μm Shanghai Aladdin Biochemical Technology Company
    Graphene oxide Analytical pure Laboratory preparation
    下载: 导出CSV
  • [1] YU S, ZHANG Y, DUAN H, et al. The impact of surface chemistry on the performance of localized solar-driven evaporation system[J]. Scientific Reports,2015,5(1):13600-13610. doi: 10.1038/srep13600
    [2] LIU Y, YU S, FENG R, BERNARD A, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation[J]. Advanced Materials,2015,27(17):2768-2774. doi: 10.1002/adma.201500135
    [3] LI C, JIANG D, HUO B, et al. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination[J]. Nano Energy,2019,60:841-849. doi: 10.1016/j.nanoen.2019.03.087
    [4] 赵建玲, 马晨雨, 李建强, 等. 基于全光谱太阳光利用的光热转换材料研究进展[J]. 材料工程, 2019, 47(6):11-19.

    ZHAO J L, MA C Y, LI J Q, et al. Research progress of photothermal conversion materials based on the utilization of full-spectrum sunlight[J]. Materials Engineering,2019,47(6):11-19(in Chinese).
    [5] 邓尧, 黄肖容, 邬晓龄. 氧化石墨烯复合材料的研究进展[J]. 材料导报, 2012, 26(8):84-87.

    DENG Y, HUANG X R, WU X L. Research progress of graphene oxide composite materials[J]. Materials Review,2012,26(8):84-87(in Chinese).
    [6] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286. doi: 10.1038/nature04969
    [7] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer grapheme[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [8] 王刚. 石墨烯复合材料的制备及其光热转换性能研究[D]. 武汉: 湖北大学, 2018.

    WANG G. Study on the preparation of graphene composites and its light-to-heat conversion properties[D]. Wuhan: Hubei University, 2018(in Chinese).
    [9] 程珙. 石墨烯的制备及其在光驱动产蒸汽中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    CHENG G. Research on the preparation of graphene and its application in light-driven steam production[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [10] CHURONG M, YAN J, HUANG Y C, et al. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion[J]. Science Advances,2018,4(8):9886-9894.
    [11] TOMOYA I, TAKAHIRO O, KYOSUKE S, et al. Fabrication of silica-coated gold nanorods and investigation of their property of photothermal conversion[J]. Biochemical and Biophysical Research Communications,2017,484(2):318-322. doi: 10.1016/j.bbrc.2017.01.112
    [12] WANG Y, WANG C, SONG X, et al. A facile nanocomposite strategy to fabricate a rG0-MWCNT photothermal layer for efficient water evaporation[J]. Journal of Materials Chemistry A,2018,6(3):963-971. doi: 10.1039/C7TA08972D
    [13] LIU X, HOU B, WANG G, et al. Black titanialgraphene oxide nanocomposite membranes with excellent photothermal property for solar steam generation[J]. Journal of Materials Research,2018,33(6):674-684. doi: 10.1557/jmr.2018.25
    [14] BATTISTA L, MECOZZI L, COPPOLA S, et al. Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNb03 crystals[J]. Applied Energy,2014,136:357-362. doi: 10.1016/j.apenergy.2014.09.035
    [15] REINA A, JIA X, HO J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters,2009,9(1):30-35. doi: 10.1021/nl801827v
    [16] HU X Z, XU W C, ZHOU L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under One Sun[J]. Advanced Materials,2017,29(5):1604031-1604036. doi: 10.1002/adma.201604031
    [17] ITO Y, TANABE Y. HAN JH, et al. Multifunctional porous graphene fof high-efficiency steam generation by heat localization[J]. Advanced Materials,2015,27(29):4302-4307. doi: 10.1002/adma.201501832
    [18] YANG J, PANG Y, HUANG W, et al. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano,2017,11(6):5510-5518. doi: 10.1021/acsnano.7b00367
    [19] HE S, ZHANG F, CHENG S, et al. Synthesis of sodium acrylate and acrylamide copolymer/GO hydrogels and their effective adsorption for Pb2+and Cd2+[J]. Acs Sustamable Chemistry & Engineering,2016,4(7):3948-3959.
    [20] LI X Q, XU W C, TANG M Y, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the Nation all Academy of Sciences of the United States of America,2016,113(49):13953-13958.
    [21] 王敏, 陈爱侠, 陈贝. 壳聚糖/氧化石墨烯复合材料对Cr(VI)吸附性能研究口[J]. 环境保护科学, 2018, 44(2):51-56.

    WANG Min, CHEN Aixia, CHEN Bei. Research on the adsorption performance of chitosan/graphene oxide compo-sites for Cr(VI)[J]. Environmental Protection Science,2018,44(2):51-56(in Chinese).
    [22] PERESIN M S, HABIBI Y, ZOPPE J O, et al. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization[J]. Biomacromolecules,2010,11(3):674-810. doi: 10.1021/bm901254n
    [23] 陈艳华, 朱丽霞. PVA/氧化石墨烯纳米复合纤维制备及性能研究[J]. 浙江纺织服装职业技术学院学报, 2016(4):15-19.

    CHEN Y H, ZHU L X. Preparation and properties of PVA/graphene oxide nanocomposite fiber[J]. Journal of Zhejiang Textile and Clothing Vocational and Technical College,2016(4):15-19(in Chinese).
    [24] TRUONG Y B, MARDEL J, GAO Y M, et al. Functional cross-linked electrospun polyvinyl alcohol membranes and their potential applications[J]. Macromolecular Materials and Engineering,2017,302(8):1700024-1700033. doi: 10.1002/mame.201700024
    [25] LEE S S, LEE D M, JEONG H S, et al. Composite microgels created by complexation between polyvinyl alcohol and graphene oxide in compressed double-emulsion drops[J]. Small,2019,19(3):812.
    [26] YONG J, YU S S, LE S, et al. Highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A,2018,6:7942-7949. doi: 10.1039/C8TA00187A
    [27] 胡希丽, 田伟明, 朱士凤, 等. 聚乙烯醇氧化石墨烯导电棉织物的制备[J]. 棉纺织技术, 2016, 44(4):28-32.

    HU X L, TIAN W M, ZHU S F, et al. Preparation of polyvinyl alcohol graphene oxide conductive cotton fabric[J]. Cotton Textile Technology,2016,44(4):28-32(in Chinese).
    [28] LIU Y, CHEN J, GUO D, et al. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface[J]. ACS Applied Materials & Interfaces,2015,7(24):13645-13652.
    [29] GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nature Communication,2014,5:4449-4456. doi: 10.1038/ncomms5449
    [30] CHEN Q, PEI Z, XU Y, et al. A durable monolithic polymer foam for efficient solar steam generation[J]. Chemical Science,2018,9(3):623-628. doi: 10.1039/C7SC02967E
    [31] CHANG C, TAO P, FU B, et al. Three-dimensional porous solar-driven interfacial evaporator for high-efficiency steam generation under low solar flux.[J]. ACS Omega,2019,4(2):3546-3555. doi: 10.1021/acsomega.8b03573
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1094
  • HTML全文浏览量:  557
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 录用日期:  2021-02-10
  • 网络出版日期:  2021-03-04
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回