留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷钼酸基离子液体和水滑石对膨胀阻燃热塑性聚氨酯弹性体复合材料性能的影响

高野 张胜 谷晓昱 孙军 李洪飞

高野, 张胜, 谷晓昱, 等. 磷钼酸基离子液体和水滑石对膨胀阻燃热塑性聚氨酯弹性体复合材料性能的影响[J]. 复合材料学报, 2022, 39(2): 568-576. doi: 10.13801/j.cnki.fhclxb.20210330.005
引用本文: 高野, 张胜, 谷晓昱, 等. 磷钼酸基离子液体和水滑石对膨胀阻燃热塑性聚氨酯弹性体复合材料性能的影响[J]. 复合材料学报, 2022, 39(2): 568-576. doi: 10.13801/j.cnki.fhclxb.20210330.005
GAO Ye, ZHANG Sheng, GU Xiaoyu, et al. Influence of phosphomolybdic acid-based ionic liquid and layered double hydroxide on the properties of intumescent flame-retardant thermoplastic polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 568-576. doi: 10.13801/j.cnki.fhclxb.20210330.005
Citation: GAO Ye, ZHANG Sheng, GU Xiaoyu, et al. Influence of phosphomolybdic acid-based ionic liquid and layered double hydroxide on the properties of intumescent flame-retardant thermoplastic polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 568-576. doi: 10.13801/j.cnki.fhclxb.20210330.005

磷钼酸基离子液体和水滑石对膨胀阻燃热塑性聚氨酯弹性体复合材料性能的影响

doi: 10.13801/j.cnki.fhclxb.20210330.005
基金项目: 国家自然科学基金(51803007)
详细信息
    通讯作者:

    孙军,博士,副教授,硕士生导师,研究方向为阻燃高分子材料、纳米复合材料等 E-mail:sunj@mail.buct.edu.cn

  • 中图分类号: TB332

Influence of phosphomolybdic acid-based ionic liquid and layered double hydroxide on the properties of intumescent flame-retardant thermoplastic polyurethane elastomer composites

  • 摘要: 采用离子交换的方法合成了磷钼酸基离子液体(PMAIL),并与水滑石(LDH)复配,添加到膨胀阻燃热塑性聚氨酯弹性体(IFR/TPU)复合材料中,研究了PMAIL和LDH对IFR/TPU复合材料阻燃性能、热稳定性和加工流动性的影响。结果表明,PMAIL和LDH复配使用提高了IFR/TPU复合材料的阻燃性能和热稳定性;当PMAIL、LDH和IFR的质量比为0.2∶1.0∶8.8且总添加量为10wt%时,PMAIL-LDH-IFR/TPU复合材料的极限氧指数为30.1%,垂直燃烧测试达到UL-94 V-0级,热释放速率峰值和总热释放量与纯TPU相比分别下降88.06%和45.88%;平衡扭矩、熔融指数和熔融温度等数据变化表明,PMAIL-LDH-IFR/TPU复合材料具有良好的加工流动性。

     

  • 图  1  磷钼酸基离子液体(PMAIL)的合成路径

    Figure  1.  Synthesis path of phosphomolybdic acid-based ionic liquid (PMAIL)

    IL—Ionic liquid; PMA—Phosphomolybdic acid

    图  2  PMAIL的FTIR图谱 (a) 和EDS图谱 (b)

    Figure  2.  FTIR spectra (a) and EDS spectrum (b) of PMAIL

    图  3  PMA、IL和PMAIL的TG (a) 和DTG (b) 曲线

    Figure  3.  TG (a) and DTG (b) curves of PMA, IL and PMAIL

    图  4  TPU、IFR/TPU、IL-IFR/TPU、PMAIL-IFR/TPU和PMAIL-LDH-IFR/TPU复合材料在LOI为30.0%时的燃烧照片

    Figure  4.  Burning digital photographs of TPU, IFR/TPU, IL-IFR/TPU, PMAIL-IFR/TPU and PMAIL-LDH-IFR/TPU composites at LOI of 30.0%

    图  5  TPU、PMAIL-IFR/TPU和PMAIL-LDH-IFR/TPU复合材料的锥形量热测试曲线

    Figure  5.  Cone calorimetric test curves of TPU, PMAIL-IFR/TPU and PMAIL-LDH-IFR/TPU composites

    图  6  TPU (a)、PMAIL-IFR/TPU (b)和PMAIL-LDH-IFR/TPU (c)复合材料的锥形量热测试后残炭的数码照片和SEM图像

    Figure  6.  Digital photographs and SEM images of residue after the cone calorimeter test of TPU (a), PMAIL-IFR/TPU (b) and PMAIL-LDH-IFR/TPU (c) composites

    图  7  TPU、IFR/TPU、IL-IFR/TPU、PMAIL-IFR/TPU和PMAIL-LDH-IFR/TPU复合材料在N2中的TG (a)和DTG (b) 曲线

    Figure  7.  TG (a) and DTG (b) curves of TPU, IFR/TPU, IL-IFR/TPU, PMAIL-IFR/TPU and PMAIL-LDH-IFR/TPU composites in N2

    图  8  TPU、IFR/TPU、IL-IFR/TPU、PMAIL-IFR/TPU和PMAIL-LDH-IFR/TPU复合材料的扭矩曲线 (a) 和DSC曲线 (b)

    Figure  8.  Torque curves (a) and DCS curves (b) of TPU, IFR/TPU, IL-IFR/TPU, PMAIL-IFR/TPU and PMAIL-LDH-IFR/TPU composites

    表  1  PMAIL-水滑石/膨胀阻燃热塑性聚氨酯弹性体(PMAIL-LDH-IFR/TPU)复合材料的配比

    Table  1.   Formulation of PMAIL-hydrotalcite/expanded flame-retardant thermoplastic polyurethane elastomer (PMAIL-LDH-IFR/TPU) composites

    No.SampleIL/wt%PMAIL/wt%LDH/wt%IFR/wt%TPU/wt%
    1# TPU 0 0 0 0 100
    2# IFR/TPU 0 0 0 10.0 90
    3# IL-IFR/TPU 0.2 0 0 9.8 90
    4# PMAIL-IFR/TPU 0 0.2 0 9.8 90
    5# PMAIL-LDH-IFR/TPU 0 0.2 1.0 8.8 90
    Note: IFR—Mixture of ammonium polyphosphate and pentaerythritol with a ratio of 3∶1.
    下载: 导出CSV

    表  2  PMA、IL和PMAIL的TG数据

    Table  2.   TG data of of PMA, IL and PMAIL

    SampleT5%/℃Tmax/℃Char residue at 800℃/%
    PMA 68.65 796.38 71.10
    IL 271.69 365.21 16.70
    PMAIL 373.71 445.22 60.00
    Notes: T5%—Temperature at 5% mass loss; Tmax—Temperature at maximum mass loss rate.
    下载: 导出CSV

    表  3  TPU、IFR/TPU、IL-IFR/TPU、PMAIL-IFR/TPU和PMAIL-LDH-IFR/TPU复合材料的极限氧指数(LOI)和UL-94垂直燃烧等级

    Table  3.   Limiting oxygen index (LOI) and UL-94 vertical burning test rating of TPU, IFR/TPU, IL-IFR/TPU, PMAIL-IFR/TPU and PMAIL-LDH-IFR/TPU composites

    SampleLOI/%UL-94
    (t1+t2)/sDrippingCotton ignitionRating
    TPU 23.7 2.3 Y(1/6) Yes V-2
    IFR/TPU 28.2 3.6 Y(1/7) Yes V-2
    IL-IFR/TPU 28.4 3.4 Y(1/5) Yes V-2
    PMAIL-IFR/TPU 29.2 3.5 Y(1/10) No V-0
    PMAIL-LDH-IFR/TPU 30.1 3.0 Y(1/8) No V-0
    Notes: t1—Self-extinguishing time after the first ignition; t2—Self-extinguishing time after the second ignition.
    下载: 导出CSV

    表  4  TPU、PMAIL-IFR/TPU和PMAIL-LDH-IFR/TPU复合材料的锥形量热测试结果

    Table  4.   Cone calorimeter test results of TPU, PMAIL-IFR/TPU and PMAIL-LDH-IFR/TPU composites

    SamplepHRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    ITF/
    s
    pSPR/
    (m2·s−1)
    pCOP/
    (g·s−1)
    pCO2P/
    (g·s−1)
    FPI/
    (m2·s·kW−1)
    FIGRA/
    (kW·m−2·s−1)
    TPU 1106.96 91.77 300 0.11 0.014 0.86 0.02 9.71
    PMAIL-IFR/TPU 317.80 66.14 788 0.06 0.008 0.17 0.08 11.77
    PMAIL-LDH-IFR/TPU 132.15 49.67 845 0.06 0.002 0.02 0.14 5.75
    Notes: pHRR—Peak of heat release rate; ITF—Time from ignition to flameout; pSPR—Peak of smoke production rate; pCOP—Peak of carbon monoxide production; pCO2P—Peak of carbon dioxied production; FPI—Defined by TTI/pHRR; FIGRA—defined by pHRR/pHRR.
    下载: 导出CSV

    表  5  TPU、IFR/TPU、IL-IFR/TPU、PMAIL-IFR/TPU和PMAIL-LDH-IFR/TPU复合材料在N2中的TG数据

    Table  5.   TG data of TPU, IFR/TPU, IL-IFR/TPU, PMAIL-IFR/TPU and PMAIL-LDH-IFR/TPU composites in N2

    SampleT5%/℃T50%/℃Tmax1/℃Tmax2/℃Tmax3/℃Char residue at 800℃/%
    TPU 330.47 397.50 327.28 428.34 2.29
    IFR/TPU 302.76 361.82 336.58 354.99 474.80 18.93
    IL-IFR/TPU 308.28 368.13 338.29 360.54 471.64 18.71
    PMAIL-IFR/TPU 307.16 366.73 341.16 357.58 483.49 18.76
    PMAIL-LDH-IFR/TPU 312.53 373.52 343.86 364.44 487.53 19.87
    Note: T50%—Temperature at 50% mass loss.
    下载: 导出CSV

    表  6  TPU、IFR/TPU、IL-IFR/TPU、PMAIL-IFR/TPU和PMAIL-LDH-IFR/TPU复合材料的熔体特性数据

    Table  6.   Melt characteristic data of TPU, IFR/TPU, IL-IFR/TPU, PMAIL-IFR/TPU and PMAIL-LDH-IFR/TPU composites

    SampleMaximum torque/(N·m)Balanced torque/(N·m)Melting index/(g·(10 min)−1)Melting temperature/℃
    TPU 10.8 6.5 2.04 144.46
    IFR/TPU 10.3 4.1 22.00 132.41
    IL-IFR/TPU 9.8 3.4 24.00 131.31
    PMAIL-IFR/TPU 9.6 3.2 21.90 132.43
    PMAIL-LDH-IFR/TPU 9.3 2.8 29.52 129.66
    下载: 导出CSV
  • [1] 牟富鹏, 田洪池, 段红云, 等. 功能型热塑性聚氨酯弹性体的发展趋势探究[J]. 弹性体, 2020, 30(3):78-82. doi: 10.3969/j.issn.1005-3174.2020.03.016

    MOU Fupeng, TIAN Hongchi, DUAN Hongyun, et al. Research on developping trend of functional TPU[J]. China Elastomerics,2020,30(3):78-82(in Chinese). doi: 10.3969/j.issn.1005-3174.2020.03.016
    [2] 杨舒逸, 金怀洋, 高山俊, 等. 热塑性聚氨酯弹性体改性研究进展[J]. 工程塑料应用, 2018, 46(6):138-142. doi: 10.3969/j.issn.1001-3539.2018.06.028

    YANG Shuyi, JIN Huaiyang, GAO Shanjun, et al. Research progress on modification of thermoplastic polyurethane elastomer[J]. Engineering Plastics Application,2018,46(6):138-142(in Chinese). doi: 10.3969/j.issn.1001-3539.2018.06.028
    [3] 唐刚, 周子健, 王浩, 等. Al(H2PO2)3/聚氨酯弹性体复合材料的制备及阻燃性能[J]. 复合材料学报, 2018, 35(9):2414-2423.

    TANG Gang, ZHOU Zijian, WANG Hao, et al. Preparation and flame retardant properties of Al(H2PO2)3/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica,2018,35(9):2414-2423(in Chinese).
    [4] 王康琪, 崔静宇, 张咪, 等. 热塑性聚氨酯弹性体的无卤阻燃研究进展[J]. 聚氨酯工业, 2019, 34(6):6-8.

    WANG Kangqi, CUI Jingyu, ZHANG Mi, et al. Research progress in halogen-free flame retardancy of thermoplastic polyurethane elastomers[J]. Polyurethane Industry,2019,34(6):6-8(in Chinese).
    [5] 潘利文, 李孔哲, 肖阳, 等. 膨胀型阻燃剂的研究进展[J]. 材料导报, 2016, 30(5):27-32.

    PAN Liwen, LI Kongzhe, XIAO Yang, et al. Research status of intumescent flame retardant[J]. Materials Reports,2016,30(5):27-32(in Chinese).
    [6] SHAN X, ZHANG P, SONG L, et al. Compound of nickel phosphate with Ni(OH)(PO4)2− layers and synergistic application with intumescent flame retardants in thermoplastic polyurethane elastomer[J]. Industrial & Engineering Chemistry Research,2011,50(12):7201-7209.
    [7] JIAO Y H, WANG X L, WANG Y Z, et al. Thermal degradation and combustion behaviors of flame-retardant polypropylene/thermoplastic polyurethane blends[J]. Journal of Macromolecular Science Part B,2009,48(5):889-909. doi: 10.1080/00222340903028969
    [8] LIN M, LI B, LI Q, et al. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes[J]. Journal of Applied Polymer Science,2011,121(4):1951-1960. doi: 10.1002/app.33759
    [9] SINGH S K, SAVOY A W. Ionic liquids synthesis and applications: An overview[J]. Journal of Molecular Liquids,2020,297:112038. doi: 10.1016/j.molliq.2019.112038
    [10] 屈贞财. 离子液体在阻燃领域的研究进展[J]. 高分子通报, 2020(6):16-25.

    QU Zhencai. Research progress of ionic liquids in the field of flame retardancy[J]. Polymer Bulletin,2020(6):16-25(in Chinese).
    [11] CHEN X, FENG X, JIAO C. Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6[J]. Journal of Thermal Analysis and Calorimetry,2017,129(2):851-857. doi: 10.1007/s10973-017-6189-4
    [12] CHEN X, MA C, JIAO C. Synergistic effects between [Emim]PF6 and aluminum hypophosphite on flame retardant thermoplastic polyurethane[J]. RSC Advances,2016,6(71):67409-67417. doi: 10.1039/C6RA14094G
    [13] JIAO C, WANG H, CHEN X. Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane[J]. Journal of Thermal Analysis and Calorimetry,2018,133(3):1471-1480. doi: 10.1007/s10973-018-7190-2
    [14] JIAO C, WANG H, CHEN X, et al. Flame retardant and thermal degradation properties of flame retardant thermoplastic polyurethane based on HGM@[EOOEMI m][BF4][J]. Journal of Thermal Analysis and Calorimetry,2018,135(6):3141-3152.
    [15] CHEN S, LI J, ZHU Y, et al. Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid[J]. Journal of Materials Chemistry A,2013,1(48):15242-15246. doi: 10.1039/c3ta13538a
    [16] 李一敏, 王成乐, 李娟. 磷钼酸盐中金属离子对聚丙烯阻燃效率的提升[J]. 无机材料学报, 2020, 35(9):1029-1033. doi: 10.15541/jim20190529

    LI Yimin, WANG Chengle, LI Juan. Improvement of metal caions in polyoxometalate on flame retardant efficiency of polypropylene[J]. Journal of Inorganic Materials,2020,35(9):1029-1033(in Chinese). doi: 10.15541/jim20190529
    [17] CHEN S, LI J, ZHU Y, et al. Roles of anion of polyoxometalate-based ionic liquids in properties of intumescent flame retardant polypropylene[J]. RSC Advances,2014,4(62):32902-32913. doi: 10.1039/C4RA04592K
    [18] XIAO F, WU K, LUO F, et al. Influence of ionic liquid-based metal-organic hybrid on thermal degradation, flame retardancy, and smoke suppression properties of epoxy resin composites[J]. Journal of Materials Science,2018,53(14):10135-10146. doi: 10.1007/s10853-018-2318-0
    [19] GAO Y, WU J, WANG Q, et al. Flame retardant polymer/layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry A,2014,2(29):10996-11016. doi: 10.1039/c4ta01030b
    [20] 江玉. 水滑石层间改性及其阻燃EVA的研究[D]. 北京: 北京化工大学, 2015.

    JIANG Yu. Effects of modified hydrotalcite on fire perfor-mance of ethylene-vinyl acetate copolymer[D]. Beijing: Beijing University of Chemical Technology, 2015(in Chinese).
    [21] 涂永鑫. 插层水滑石对聚丙烯阻燃性能和力学性能的影响[D]. 北京: 北京化工大学, 2017.

    TU Yongxin. Eeffect of intercalated LDHs on flame retardancy and mechanical properties of polypropylene[D]. Beijing: Beijing University of Chemical Technology, 2017(in Chinese).
    [22] 金晓冬. 含磷/氮/硫新型阻燃剂的制备及其在生物基高分子材料中的应用[D]. 北京: 北京化工大学, 2018.

    JIN Xiaodong. Preparation of new phosphorus/nitrogen/sulfur based flame retardants and their application in bio-based polymers[D]. Beijing: Beijing University of Chemical Technology, 2018(in Chinese).
    [23] 郑勇, 郑永军, 王梦媛, 等. 几种典型咪唑类离子液体的红外光谱研究[J]. 广州化工, 2017, 45(21):88-89. doi: 10.3969/j.issn.1001-9677.2017.21.032

    ZHENG Yong, ZHENG Yongjun, WANG Mengyuan, et al. Study on infrared spectra of some typical imidazolium-based ionic liquids[J]. Guangzhou Chemical Industry,2017,45(21):88-89(in Chinese). doi: 10.3969/j.issn.1001-9677.2017.21.032
    [24] 陈月铃, 勾星月, 曹智文, 等. 纳米层状阻燃复合材料的制备及研究进展[J]. 工程塑料应用, 2019, 47(10):128-134. doi: 10.3969/j.issn.1001-3539.2019.10.024

    CHEN Yueling, GOU Xingyue, CAO Zhiwen, et al. Preparation and progress of layered flame retardant nanocompo-sites[J]. Engineering Plastics Application,2019,47(10):128-134(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.10.024
    [25] WANG X, WANG S, WANG W, et al. The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups[J]. Composites Part B: Engineering,2019,183:107568.
    [26] ZHOU Q, LIU C, ZHOU K, et al. Synergistic effect between solid wastes and intumescent flame retardant on flammability and smoke suppression of thermoplastic polyurethane composites[J]. Polymers for Advanced Technologies,2019,31(9):4-14.
    [27] 杨舒逸. TPU/PVC合金的制备与阻燃改性研究[D]. 武汉: 武汉理工大学, 2019.

    YANG Shuyi. Study on preparation and flame retardant modification of TPU/PVC alloy[D]. Wuhan: Wuhan University of Technology, 2019(in Chinese).
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  1135
  • HTML全文浏览量:  367
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-03-24
  • 录用日期:  2021-03-26
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回