留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂复合材料和铝合金温热自冲铆接工艺及接头力学性能

刘洋 庄蔚敏

刘洋, 庄蔚敏. 碳纤维增强树脂复合材料和铝合金温热自冲铆接工艺及接头力学性能[J]. 复合材料学报, 2021, 38(11): 3563-3577. doi: 10.13801/j.cnki.fhclxb.20210105.002
引用本文: 刘洋, 庄蔚敏. 碳纤维增强树脂复合材料和铝合金温热自冲铆接工艺及接头力学性能[J]. 复合材料学报, 2021, 38(11): 3563-3577. doi: 10.13801/j.cnki.fhclxb.20210105.002
LIU Yang, ZHUANG Weimin. Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3563-3577. doi: 10.13801/j.cnki.fhclxb.20210105.002
Citation: LIU Yang, ZHUANG Weimin. Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3563-3577. doi: 10.13801/j.cnki.fhclxb.20210105.002

碳纤维增强树脂复合材料和铝合金温热自冲铆接工艺及接头力学性能

doi: 10.13801/j.cnki.fhclxb.20210105.002
基金项目: 国家自然科学基金 (51775227;51375201)
详细信息
    通讯作者:

    庄蔚敏,博士,教授,博士生导师,研究方向为车身结构轻量化设计 E-mail:zhuangwm@jlu.edu.cn

  • 中图分类号: TB332

Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy

  • 摘要: 为研究传统自冲铆(SPR)工艺连接碳纤维增强树脂复合材料(CFRP)和铝合金的损伤问题,制备三种典型铺层结构的自冲铆接头,研究铺层结构对接头表面宏观损伤形貌的影响。在不同测试温度下对CFRP进行力学试验,研究温度对CFRP力学性能及失效的影响。基于CFRP的温热力学性能,以减小接头损伤为目的,创新性提出了CFRP和铝合金的温热自冲铆接(WSPR)工艺,对比了两种铆接工艺获得接头中CFRP的损伤差异。制备CFRP和铝合金的WSPR接头,研究铺层角度对接头力学性能和失效过程的影响。研究表明:常温下铆接时,钉头附近区域易出现宏观裂纹缺陷,主要以平行于纤维方向的基体裂纹和垂直于纤维方向的纤维裂纹形式存在。在树脂基体的玻璃化转变温度下,CFRP在横向和剪切方向的延展性大幅度提高,导致WSPR接头的CFRP表面无宏观裂纹,同时减小了分层损伤面积。铺层角度影响接头的拉剪力学性能及失效过程,[0/90/0]s铺层接头的力学性能最优。

     

  • 图  1  [0/90/0]s碳纤维增强树脂复合材料(CFRP)的铺层结构

    Figure  1.  Laminated structure of [0/90/0]s carbon fiber reinforced polymer (CFRP)

    图  2  温热自冲铆接(WSPR)设备

    Figure  2.  Warm self-piercing riveting (WSPR) equipment

    图  3  自冲铆(SPR)模具尺寸

    Figure  3.  Geometries of the self-piercing riveting (SPR) tools

    图  4  常温SPR接头横截面

    Figure  4.  Cross-section of SPR joint

    图  5  SPR接头上表面的损伤形貌

    Figure  5.  Damage morphologies of the upper surface of the SPR joint

    图  6  CFRP拉伸试件尺寸

    Figure  6.  Configuration of CFRP tensile specimen

    图  7  CFRP拉伸试验装置

    Figure  7.  Device of CFRP tensile test

    图  8  CFRP的拉伸应力-应变曲线

    Figure  8.  Tensile stress-strain curves of CFRP

    图  9  CFRP纵横剪切试件尺寸

    Figure  9.  Configuration of longitudinal and transverse shear CFRP specimen

    图  10  CFRP纵横剪切试件试验装置

    Figure  10.  Device of longitudinal and transverse shear test of CFRP specimen

    图  11  CFRP的纵横剪切应力-应变曲线

    Figure  11.  Longitudinal and transverse shear stress-strain curves of CFRP

    图  12  CFRP横向剪切试件尺寸

    Figure  12.  Configuration of transverse shear CFRP specimen

    图  13  CFRP横向剪切试件试验装置

    Figure  13.  Device of transverse shear test of CFRP specimen

    图  14  CFRP的横向剪切应力-应变曲线

    Figure  14.  Transverse shear stress-strain curves of CFRP

    图  15  WSPR工艺示意图

    Figure  15.  Schematic diagram of WSPR

    图  16  WSPR工艺制备CFRP-铝合金接头的横截面

    Figure  16.  Cross-section of CFRP-aluminium alloy joint prepared by WSPR

    图  17  WSPR工艺制备CFRP-铝合金接头上表面的损伤形貌

    Figure  17.  Damage morphology of the upper surface of the CFRP-aluminium alloy joint prepared by WSPR

    图  18  钉头附近区域CFRP损伤形貌

    Figure  18.  Damage morphology of CFRP near the rivet head

    图  19  CFRP-铝合金接头的分层损伤形貌

    Figure  19.  Delamination morphologies of CFRP-aluminium alloy joint

    图  20  WSPR接头尺寸

    Figure  20.  Configuration of a single lap WSPR joint

    图  21  各组CFRP-铝合金接头的拉伸载荷-位移曲线

    Figure  21.  Load-displacement curves of each CFRP-aluminium alloy joint

    图  22  各组CFRP-铝合金接头的最大载荷均值和能量吸收值

    Figure  22.  Average maximum loads and energy absorptions of CFRP-aluminium alloy joints

    图  23  各组CFRP-铝合金接头的失效形式

    Figure  23.  Failure modes of CFRP-aluminium alloy joints

    图  24  各组CFRP-铝合金接头搭接区域的应变场分布

    Figure  24.  Strain distribution fields on the overlap regions of CFRP-aluminium alloy joints

    表  1  AA5754铝合金力学性能参数

    Table  1.   Mechanical properties of AA5754 aluminium alloy

    MaterialDensity /(kg·m−3)Elastic modulus /GPaPoisson ratioYield strength/MPaTensile strength /MPa
    AA57542700700.3162.1244.1
    下载: 导出CSV

    表  2  不同CFRP-铝合金接头的命名及铆接参数

    Table  2.   Riveting parameters and nomenclature of different CFRP-aluminium alloy joints

    JointLaminated structure of CFRPPunch displacement/mm
    A1[0/90/0]s131.4
    B1[45/−45/45]s131.4
    C1[45/90/−45]s131.4
    下载: 导出CSV
  • [1] PRAMANIK A, BASAK A K, DONG Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys—A review[J]. Composites: Part A,2017,101:1-29. doi: 10.1016/j.compositesa.2017.06.007
    [2] 宋燕利, 杨龙, 郭巍, 等. 面向汽车轻量化应用的碳纤维复合材料关键技术[J]. 材料导报, 2016, 30(17):16-25.

    SONG Yanli, YANG Long, GUO Wei, et al. A survey on key technologies for carbon fiber-reinforced plastics with applications to automobile lightening[J]. Materials Review,2016,30(17):16-25(in Chinese).
    [3] 许现哲, 刘通, 王文丽, 等. 碳纤维增强聚合物复合材料车身T型接头静态性能与失效机制[J]. 复合材料学报, 2019, 36(10):2227-2234.

    XU Xianzhe, LIU Tong, WANG Wenli, et al. Performance and failure mechanics of carbon fiber reinforced polymer composite T-joint in quasi-static loading for automobile structures[J]. Acta Materiae Compositae Sinica,2019,36(10):2227-2234(in Chinese).
    [4] 李永兵, 马运五, 楼铭, 等. 轻量化薄壁结构点连接技术研究进展[J]. 机械工程学报, 2020, 56(6):125-146. doi: 10.3901/JME.2020.06.125

    LI Yongbing, MA Yunwu, LOU Ming, et al. Advances in spot joining technologies of lightweight thin-walled structures[J]. Journal of Mechanical Engineering,2020,56(6):125-146(in Chinese). doi: 10.3901/JME.2020.06.125
    [5] 黄志超, 程露, 涂林鹏, 等. 不同纤维铺层玻璃-碳纤维混杂复合材料与铝合金自冲铆接强度对比[J]. 塑性工程学报, 2020, 27(10):54-61. doi: 10.3969/j.issn.1007-2012.2020.10.009

    HUANG Zhichao, CHENG Lu, TU Linpeng, et al. Comparison on self-piercing riveting strength of glass-carbon fiber hybrid composites with different fiber layers and aluminum alloy[J]. Journal of Plasticity Engineering,2020,27(10):54-61(in Chinese). doi: 10.3969/j.issn.1007-2012.2020.10.009
    [6] LIU Y, ZHUANG W M. Self-piercing riveted-bonded hybrid joining of carbon fibre reinforced polymers and aluminium alloy sheets[J]. Thin-Walled Structures,2019,144:106340. doi: 10.1016/j.tws.2019.106340
    [7] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11):1825-1830. doi: 10.11896/cldb.18030256

    LIU Yang. ZHUANG Weimin, SHI Hongda. Influencing factors on fatigue performance of self-piercing riveted joints: A review[J]. Materials Reports,2019,33(11):1825-1830(in Chinese). doi: 10.11896/cldb.18030256
    [8] LIANG J, JIANG H, ZHANG J, et al. Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052[J]. Archives of Civil and Mechanical Engineering,2019,19:240-250. doi: 10.1016/j.acme.2018.11.001
    [9] 刘洋, 庄蔚敏, 解东旋. 纤维增强复合材料与铝合金自冲铆接研究进展[J]. 材料导报, 2020, 34(11):11053-11063. doi: 10.11896/cldb.19040060

    LIU Yang. ZHUANG Weimin, XIE Dongxuan. Research progress on self-piercing riveting of fiber reinforced polymers and aluminium alloy sheets[J]. Materials Reports,2020,34(11):11053-11063(in Chinese). doi: 10.11896/cldb.19040060
    [10] VORDERBRÜGGEN J, MESCHUT G. Investigations on a material-specific joining technology for CFRP hybrid joints along the automotive process chain[J]. Composite Structures,2019,230:111533. doi: 10.1016/j.compstruct.2019.111533
    [11] MESCHUT G, GUDE M, AUGENTHALER F, et al. Evaluation of damage to carbon-fiber composites induced by self-pierce riveting[J]. Procedia CIRP,2014,18:186-191. doi: 10.1016/j.procir.2014.06.129
    [12] GAY A, ROCHE J, LAPEYRONNIE P, et al. Non-destructive inspection of initial defects of PA6.6-GF50/ aluminum self-piercing riveted joints and damage monitoring under mechanical static loading[J]. International Journal of Damage Mechanics,2017,26(8):1127-1146. doi: 10.1177/1056789516648370
    [13] RAO H M, KANG J, HUFF G, et al. Impact of rivet head height on the tensile and fatigue properties of lap shear self-pierced riveted CFRP to aluminum[J]. SAE International Journal of Materials and Manufacturing,2017,10(2):167-173. doi: 10.4271/2017-01-0477
    [14] RAO H M, KANG J, HUFF G, et al. Impact of specimen configuration on fatigue properties of self-piercing riveted aluminum to carbon fiber reinforced polymer composite[J]. International Journal of Fatigue,2018,113:11-22. doi: 10.1016/j.ijfatigue.2018.03.031
    [15] HIRSCH F, MÜLLER S, MACHENS M, et al. Simulation of self-piercing rivetting processes in fibre reinforced polymers: Material modelling and parameter identification[J]. Journal of Materials Processing Technology,2017,241:164-177. doi: 10.1016/j.jmatprotec.2016.10.010
    [16] WELF-GUNTRAM D, REINHARD M, RAIK G, et al. Numerical and experimental analysis of self piercing riveting process with carbon fiber-reinforced plastic and aluminium sheets[J]. Key Engineering Materials,2013:554-557.
    [17] LIU Y, ZHUANG W, WU S, et al. Damage to carbon fibre reinforced polymers (CFRP) in hole-clinched joints with aluminium alloy and CFRP[J]. Composite Structures,2020,234:111710. doi: 10.1016/j.compstruct.2019.111710
    [18] HE X C, WANG Y F, LU Y, et al. Self-piercing riveting of similar and dissimilar titanium sheet materials[J]. The International Journal of Advanced Manufacturing Technology,2015,80(9-12):2105-2115. doi: 10.1007/s00170-015-7174-3
    [19] 庄蔚敏, 赵文增, 解东旋, 等. 22MnB5高强钢/7075铝合金热铆接冷模具淬火无铆钉铆接研究[J]. 机械工程学报, 2017, 53(20):106-112. doi: 10.3901/JME.2017.20.106

    ZHUANG Weimin, ZHAO Wenzeng, XIE Dongxuan, et al. Research on hot riveting quenching clinching of the high strength steel 22MnB5 and aluminum alloy 7075[J]. Journal of Mechanical Engineering,2017,53(20):106-112(in Chinese). doi: 10.3901/JME.2017.20.106
    [20] LAMBIASE F, ILIO A D. Mechanical clinching of metal–polymer joints[J]. Journal of Materials Processing Technology,2015,215:12-19. doi: 10.1016/j.jmatprotec.2014.08.006
    [21] LIN P C, LIN J W, LI G X, et al. Clinching process for aluminum alloy and carbon fiber-reinforced thermoplastic sheets[J]. The International Journal of Advanced Manufacturing Technology,2018,97(1):529-541.
    [22] 中国国家标准化管理委员会(标准制定单位). 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of oriented fiber reinforced polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [23] 中国国家标准化管理委员会(标准制定单位). 聚合物基复合材料纵横剪切试验方法: GB/T 3355—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test method for in-plane shear response of polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [24] American Society for Testing and Materials. Standard test method for shear properties of composite materials by the V-notched beam method: ASTM D5379/D5379M—2019[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2019.
    [25] 冷杨松, 李迪, 曹凡, 等. 双相钢车身板DP780的温热成形本构模型[J]. 济南大学学报(自然科学版), 2019, 33(4):301-307.

    LENG Yangsong, LI Di, CAO Fan, et al. Constitutive model of dual-phase steel body panel DP780 in warm forming[J]. Journal of University of Jinan(Science and Technology),2019,33(4):301-307(in Chinese).
    [26] CORONADO P, ARGUELLES A, VINA J, et al. Influence of temperature on a carbon-fibre epoxy composite subjected to static and fatigue loading under mode-I delamination[J]. International Journal of Solids and Structures,2012,49(21):2934-2940. doi: 10.1016/j.ijsolstr.2012.05.018
  • 加载中
图(25) / 表(2)
计量
  • 文章访问数:  1537
  • HTML全文浏览量:  746
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 录用日期:  2020-12-28
  • 网络出版日期:  2021-01-06
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回