留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2.5D机织复合材料的渐进损伤与失效模拟

吕青泉 赵振强 李超 张超

吕青泉, 赵振强, 李超, 等. 2.5D机织复合材料的渐进损伤与失效模拟[J]. 复合材料学报, 2021, 38(8): 2747-2757. doi: 10.13801/j.cnki.fhclxb.20201116.006
引用本文: 吕青泉, 赵振强, 李超, 等. 2.5D机织复合材料的渐进损伤与失效模拟[J]. 复合材料学报, 2021, 38(8): 2747-2757. doi: 10.13801/j.cnki.fhclxb.20201116.006
LV Qingquan, ZHAO Zhenqiang, LI Chao, et al. Progressive damage and failure simulation of 2.5D woven composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2747-2757. doi: 10.13801/j.cnki.fhclxb.20201116.006
Citation: LV Qingquan, ZHAO Zhenqiang, LI Chao, et al. Progressive damage and failure simulation of 2.5D woven composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2747-2757. doi: 10.13801/j.cnki.fhclxb.20201116.006

2.5D机织复合材料的渐进损伤与失效模拟

doi: 10.13801/j.cnki.fhclxb.20201116.006
基金项目: 国家自然科学基金(11772267;12002111);结构力学行为科学与技术创新引智基地(BP0719007)
详细信息
    通讯作者:

    张超,教授,研究方向为复合材料多尺度力学分析  E-mail:chaozhang@nwpu.edu.cn

  • 中图分类号: TB332

Progressive damage and failure simulation of 2.5D woven composites

  • 摘要: 为了研究典型2.5D机织复合材料的压缩性能,开展了复合材料单胞结构的经向和纬向压缩实验,并通过对材料编织结构的细观表征,建立了细观尺度的单胞有限元模型来模拟压缩载荷下单胞内部的变形及渐进失效过程。结果表明,2.5D机织复合材料在受压时表现出明显的非线性力学响应,材料沿经向的压缩模量和强度均高于纬向;经向压缩时材料的主要破坏模式有经纱的横向开裂、纤维束间的界面分层破坏、纬纱的压溃及基体的开裂,纬向压缩时出现的主要破坏模式是纬纱的压溃、纬纱纤维束的断裂及基体开裂;通过对比试验与有限元结果,认为所建立的细观有限元模型能够准确预测材料单胞在压缩载荷下的应力-应变响应,并且能够模拟编织结构中的损伤起始和演化过程。

     

  • 图  1  2.5D机织复合材料试样及结构示意图

    Figure  1.  Sample and structure diagram of 2.5D woven composites

    RVE—Representative volume element

    图  2  准静态试验系统及设备

    Figure  2.  Quasi-static test system and equipment

    图  3  计算机图像测定法处理2.5D机织复合材料试样横截面

    Figure  3.  Computer image measuring method for processing sample section of 2.5D woven composites

    图  4  2.5D机织复合材料几何模型

    Figure  4.  2.5D woven composite geometric model

    图  5  2.5D机织复合材料最小体积代表性单胞(RVE)有限元模型网格划分

    Figure  5.  Meshing of 2.5D woven composite representative volume element (RVE) mesoscopic finite element model

    图  6  2.5D机织复合材料RVE试样准静态压缩破坏形貌

    Figure  6.  Quasi-static compression failure morphology of 2.5D woven composite RVE specimen

    图  7  2.5D机织复合材料在准静态压缩下有限元模拟与试验应力-应变曲线对比

    Figure  7.  Comparison of quasi-static compression stress-strain curves between finite element modeling and experiment of 2.5D woven composites

    图  8  2.5D机织复合材料经向压缩渐进损伤过程

    Figure  8.  Progressive damage process of 2.5D woven composite under warp direction compression

    图  9  2.5D机织复合材料在经向压缩载荷下纤维束的应力分布云图(ε=0.39%)

    Figure  9.  Stress distribution contours of fiber bundles for 2.5D woven composite under warp compression (ε=0.39%)

    图  10  2.5D机织复合材料纬向压缩渐进损伤过程

    Figure  10.  Progressive damage process of 2.5D woven composite under weft direction compression

    图  11  2.5D机织复合材料纬向压缩下的纤维束应力分布云图(ε=0.35%)

    Figure  11.  Yarns stress distribution contours of 2.5D woven composite under weft compression (ε=0.35%)

    表  1  纤维束模型截面几何参数

    Table  1.   Section geometric parameters of fiber tow model

    Width/mmHeight/mmSection power
    Warp yarn 1.21 0.47 1
    Weft yarn 3.15 0.67 0.8
    下载: 导出CSV

    表  2  T800碳纤维/PR520环氧树脂纤维束的刚度与强度性能参数

    Table  2.   Stiffness and strength properties of T800 carbon fiber/PR520 epoxy resin fiber tows

    Warp yarnWeft yarn
    Fiber volume fraction Vf /% 81 64
    Elastic modulus E11/GPa 238.96 169.26
    Elastic modulus E22(E33)/GPa 14.59 9.30
    Shear modulus G12(G13)/GPa 7.63 3.62
    Shear modulus G23/GPa 4.97 2.93
    Tensile strength F1t/MPa 4 462 3160
    Compression strength F1c/MPa 1 747 1 237
    Tensile strength F2t/MPa 59 58
    Compression strength F2c/MPa 119 130
    Shear strength Fls/MPa 107 93
    下载: 导出CSV

    表  3  T800/PR520 2.5D机织复合材料弹性模量、破坏应力、破坏应变的仿真预测和试验测试结果对比

    Table  3.   Comparison of numerical predicted and experimental measured elastic modulus, failure stress and failure strain of T800/PR520 2.5D woven composite

    Warp directionWeft direction
    Elastic modulus/GPaStrength/MPaFailure strain/%Elastic modulus/GPaStrength/MPaFailure strain/%
    Simulation 59.3 300.0 0.50 53.1 268.8 0.52
    Experiment 56.5 308.6 0.51 48.6 211.5 0.49
    Error/% 4.7 2.8 2.0 8.5 21.3 5.7
    下载: 导出CSV
  • [1] 张超, 许希武, 毛春见. 三维编织复合材料渐进损伤模拟及强度预测[J]. 复合材料学报, 2011, 28(2):222-230.

    ZHANG Chao, XU Xiwu, MAO Chunjian. Progressive damage simulation and strength prediction of 3D braided composites[J]. Acta Materiae Compositae Sinica,2011,28(2):222-230(in Chinese).
    [2] 曾涛, 姜黎黎. 三维编织复合材料力学性能研究进展[J]. 哈尔滨理工大学学报, 2011, 16(1):34-41, 47. doi: 10.3969/j.issn.1007-2683.2011.01.008

    ZEN Tao, JIANG Lili. Development of investigation into mechanical properties of 3D braided composites[J]. Journal of Harbin University of Science and Technology,2011,16(1):34-41, 47(in Chinese). doi: 10.3969/j.issn.1007-2683.2011.01.008
    [3] SONG J, WEN W, CUI H. Experimental and numerical investigation of mechanical behaviors of 2.5D woven composites at ambient and un-ambient temperatures[J]. Composite Structures,2018,201:699-720.
    [4] TENG X, SHI D, CHEN Z. Investigation on non-uniform strains of a 2.5D woven ceramic matrix composite under in-plane tensile stress[J]. Journal of the European Ceramic Society,2020,40:36-48. doi: 10.1016/j.jeurceramsoc.2019.08.030
    [5] YUAN S, CAO H, QIAN K. The study of low-velocity impact performance of 2.5D woven composites[J]. Fiber Reinforced Plastics/Composites,2014(1):8-12.
    [6] YOUNES R, ZAKI W. Optimal weaving for 2.5D interlocks[J]. Composite Structures,2011,93(4):1255-1264. doi: 10.1016/j.compstruct.2010.10.013
    [7] 杨振宇, 俸翔, 苏洲, 等. 2.5D编织复合材料细观结构及弹性性能[J]. 宇航材料工艺, 2010, 40(2):67-71. doi: 10.3969/j.issn.1007-2330.2010.02.018

    YANG Zhenyu, FENG Xiang, SU Zhou, et al. Meso-structure and elastic properties of 2.5D braided composites[J]. Aerospace Materials Technology,2010,40(2):67-71(in Chinese). doi: 10.3969/j.issn.1007-2330.2010.02.018
    [8] HALLAL A, YOUNES R, FARDUON F, et al. Improved analytical model to predict the effective elastic properties of 2.5D interlock woven fabrics composite[J]. Composite Structures,2012,94(10):3009-3028. doi: 10.1016/j.compstruct.2012.03.019
    [9] BYUN J, CHOU T. Elastic properties of three-dimensional angle-interlock fabric preforms[J]. Journal of the Textile Institute,1990,81(4):538-548. doi: 10.1080/00405009008658727
    [10] CHEN L, YAO X, CEN S. Predictions of elastic property on 2.5D C/SiC composites based on numerical modeling and semi-analytical method[J]. Composites Part B: Engineering,2015,74:53-65. doi: 10.1016/j.compositesb.2015.01.009
    [11] DONG W, XIAO J, LI Y. Finite element analysis of the tensile properties of 2.5D braided composites[J]. Materials Science & Engineering A,2007,457(1-2):199-204.
    [12] LIU G, ZHANG L, GUO L C, et al. Multi-scale progressive failure simulation of 3D woven composites under uniaxial tension[J]. Composite Structures,2019,208:233-243. doi: 10.1016/j.compstruct.2018.09.081
    [13] ZHANG D, CHEN L, WANG Y, et al. Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model[J]. Journal of Material Science,2017,52(11):1-23.
    [14] LU H, GUO L, LIU G, et al. Progressive damage investigation of 2.5D woven composites under quasi-static tension[J]. Acta Mechanica,2019,230(4):1323-1336. doi: 10.1007/s00707-017-2024-z
    [15] 卢子兴, 周原, 冯志海, 等. 2.5D机织复合材料压缩性能实验与数值模拟[J]. 复合材料学报, 2015, 32(1):150-159.

    LU Zixing, ZHOU Yuan, FENG Zhihai, et al. Experiment and numerical simulation on compressive properties of 2.5D woven fabric composites[J]. Acta Materiae Compositae Sinica,2015,32(1):150-159(in Chinese).
    [16] XING J. Mesomechanical simulation of rate-dependent mechanical behavior for triaxially braided composite[C]. Earth and Space, 2018: 645-654.
    [17] JIA Y, YAN W, LIU H. Carbon fiber pullout under the influence of residual thermal stress in polymer matrix compo-sites[J]. Computational Materials Science,2012,62:79-86. doi: 10.1016/j.commatsci.2012.05.019
    [18] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料压缩性能实验方法: GB/T 1448—2005[S]. 北京: 中国质检出版社, 2005.

    The Fiber Reinforced Plastic Standardization Technical Committee. Fiber-reinforced plastics composites-Determination of compressive properties: GB/T 1448—2005[S]. Beijing: China Zhijian Publishing House, 2005(in Chinese).
    [19] 杨彩云, 刘铮, 万振凯, 等. 机织物复合材料纤维体积含量计算机图像测定[J]. 复合材料学报, 2005, 22(4):142-148. doi: 10.3321/j.issn:1000-3851.2005.04.025

    YANG Caiyun, LIU Zhen, WAN Zhenkai, et al. Determination of fiber volume fractions in woven fabric composites laminates by image analysis[J]. Acta Materiae Compositae Sinica,2005,22(4):142-148(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.04.025
    [20] GOLDBERG R, ROBERTS G, GILAT A. Incorporation of mean stress effects into the micromechanical analysis of the high strain rate response of polymer matrix compo-sites[J]. Composites Part B: Engineering,2003,34(2):151-165. doi: 10.1016/S1359-8368(02)00081-1
    [21] HUANG Z. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model[J]. Composites Part A: Applied Science and Manufacturing,2001,32(2):143-172. doi: 10.1016/S1359-835X(00)00142-1
    [22] 黄争鸣. 桥联理论研究的最新进展[J]. 应用数学和力学, 2015, 36(6):563-581. doi: 10.3879/j.issn.1000-0887.2015.06.001

    HUANG Zhengming. Latest advancements of the bridging model theory[J]. Applied Mathematics and Mechanics,2015,36(6):563-581(in Chinese). doi: 10.3879/j.issn.1000-0887.2015.06.001
    [23] HASHIN.Z. Failure criteria for unidirectional fiber compo-sites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664
    [24] HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates[J]. Composites Science and Technology,2000,60(2):273-281. doi: 10.1016/S0266-3538(99)00126-8
    [25] ZHAO Z, LIU P, CHEN C, et al. Modeling the transverse tensile and compressive failure behavior of triaxially braided composites[J]. Composites Science and Technology,2019,172(1):96-107.
    [26] 刘鹏, 郭亚洲, 赵振强, 等. 二维三轴编织复合材料压缩失效行为的细观有限元模拟[J]. 航空学报, 2019, 40(7):114-128.

    LIU Peng, GUO Yazhou, ZHAO Zhenqiang, et al. Meso-scale finite element simulation of compressive failure behavior of two-dimensional triaxially braided composite[J]. Acta Aeronautica et Astronautica Sinica,2019,40(7):114-128(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1637
  • HTML全文浏览量:  614
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 录用日期:  2020-11-04
  • 网络出版日期:  2020-11-17
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回