留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维角联锁机织铝基复合材料面内拉伸力学行为与失效机制

王忠远 蔡长春 王振军 熊博文 杨伟 徐志锋 余欢

王忠远, 蔡长春, 王振军, 等. 三维角联锁机织铝基复合材料面内拉伸力学行为与失效机制[J]. 复合材料学报, 2021, 38(9): 2997-3007. doi: 10.13801/j.cnki.fhclxb.20201116.007
引用本文: 王忠远, 蔡长春, 王振军, 等. 三维角联锁机织铝基复合材料面内拉伸力学行为与失效机制[J]. 复合材料学报, 2021, 38(9): 2997-3007. doi: 10.13801/j.cnki.fhclxb.20201116.007
WANG Zhongyuan, CAI Changchun, WANG Zhenjun, et al. Mechanical behavior and failure mechanism of the 3D angle interlocking woven reinforced aluminum matrix composites under in-plane tensile loading[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2997-3007. doi: 10.13801/j.cnki.fhclxb.20201116.007
Citation: WANG Zhongyuan, CAI Changchun, WANG Zhenjun, et al. Mechanical behavior and failure mechanism of the 3D angle interlocking woven reinforced aluminum matrix composites under in-plane tensile loading[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2997-3007. doi: 10.13801/j.cnki.fhclxb.20201116.007

三维角联锁机织铝基复合材料面内拉伸力学行为与失效机制

doi: 10.13801/j.cnki.fhclxb.20201116.007
基金项目: 国家自然科学基金(51765045);航空科学基金(2019ZF056013);江西省自然科学基金(20202ACBL204010)
详细信息
    通讯作者:

    王振军,博士,教授,硕士生导师,研究方向为高耐热铝基复合材料设计与制备  E-mail:wangzhj@nchu.edu.cn

  • 中图分类号: TB331

Mechanical behavior and failure mechanism of the 3D angle interlocking woven reinforced aluminum matrix composites under in-plane tensile loading

  • 摘要: 针对真空压力浸渗法制备的三维角联锁机织铝基复合材料,采用细观力学有限元模拟与试验结合的方法研究了其面内拉伸变形损伤与断裂力学行为。结果表明:复合材料拉伸应力-应变曲线的计算与试验结果吻合较好,经(纬)向拉伸初始弹性模量、极限强度和断裂应变的计算误差分别为3.96%(1.11%)、1.40%(6.86%)和−5.49%(3.73%);经向拉伸载荷作用下,经纱界面及其邻近基体合金先后发生损伤,随拉伸应变增加损伤累积和交互作用依次引发界面、基体和纬纱失效,变形后期经纱的断裂最终导致复合材料经向拉伸失效;纬向拉伸变形前期,经纱界面和经纬纱之间薄弱的基体合金相继产生损伤和失效现象,经纱在变形中期即出现横向破坏,起主要承载作用的纬纱轴向断裂是纬向拉伸的主要失效机制,由于三维角联锁机织体中纬纱体分远低于经纱,复合材料纬向拉伸模量和强度分别仅为经向的81.8%和56.5%。

     

  • 图  1  三维角联锁碳纤维增强铝基(CF/Al)复合材料拉伸试样及尺寸

    Figure  1.  Tensile specimen and size of the 3D angle interlocking woven carbon fiber reinforced aluminum matrix (CF/Al) composites

    图  2  三维角联锁CF/Al复合材料显微组织及其内部纱线束微观结构

    Figure  2.  Microstructure of the 3D angle interlocking woven CF/Al composites and the inner fiber bundles

    图  3  三维角联锁CF/Al复合材料细观结构模型

    Figure  3.  Mesoscopic structural model of the 3D angle interlocking woven CF/Al composites

    图  4  三维角联锁CF/Al复合材料经向和纬向拉伸试验与模拟曲线

    Figure  4.  Testing and simulating tensile curves of 3D angle interlocking woven CF/Al composite

    图  5  三维角联锁CF/Al复合材料经向拉伸损伤演化过程

    Figure  5.  Damage evolution process of 3D angle interlocking woven CF/Al composite during warp directional tension ((a) Interfacial damage; (b) Matrix damage; (c) Interfacial failure; (d) Weft yarn failure; (e) Matrix failure; (f) Warp yarn failure)

    图  6  三维角联锁CF/Al复合材料经向拉伸断口形貌

    Figure  6.  Fracture morphology of 3D angle interlocking woven CF/Al composite under warp directional tension

    图  7  三维角联锁CF/Al复合材料纬向拉伸损伤演化过程

    Figure  7.  Damage evolution process of 3D angle interlocking woven CF/Al composite during weft directional tension((a) Interfacial damage; (b) Matrix damage; (c) Interfacial failure; (d) Matrix failure; (e) Warp yarn failure; (f) Weft yarn failure)

    图  8  三维角联锁CF/Al复合材料纬向拉伸断口形貌

    Figure  8.  Fracture morphology of 3D angle interlocking woven CF/Al composite under weft directional tension

    表  1  三维角联锁机织体结构参数

    Table  1.   Structural parameters of the 3D angle interlocking woven fabric

    Fabric thickness/mmYarn specificationWarp density/(yarns·(10 mm)−1)Weft density/(yarns·(10 mm)−1)Fiber content/vol%
    4.0 195Tex×2 8.0 4.0 42
    下载: 导出CSV

    表  2  三维角联锁CF/Al复合材料纱线束弹性性能参数

    Table  2.   Elastic constant parameters of the yarns in 3D angle interlocking woven CF/Al composite

    $ {E}_{11} $/MPa$ {E}_{22} $/MPa$ {G}_{12} $/MPa$ {G}_{23} $/MPa$ {\nu }_{12} $$ {\nu }_{23} $
    302700 23500 14700 10000 0.28 0.41
    Notes: $ {E}_{11} $—Elastic modulus in axial direction; $ {E}_{22} $—Elastic modulus in transverse direction; $ {G}_{12} $—Longitudinal shear modulus; $ {G}_{23} $—Transverse shear modulus; $ {\nu }_{12} $—Axial Poisson's ratio; $ {\nu }_{23} $—Transverse Poisson's ratio.
    下载: 导出CSV

    表  3  三维角联锁CF/Al复合材料纱线束极限强度性能参数

    Table  3.   Strength parameters of the yarns in 3D angle interlocking woven CF/Al composite

    $ {X}_{\rm{t}} $/MPa$ {X}_{\rm{c}} $/MPa$ {Y}_{\rm{t}} $/MPa$ {Y}_{\rm{c}} $/MPa${S}_{\!{12}}$/MPa${S}_{\!{23}}$/MPa
    1350 660 26.8 102.4 82.7 13.6
    Notes: $ {X}_{\rm{t}} $—Tensile strength in axial direction; $ {X}_{\rm{c}} $—Compressive strength in axial direction; $ {Y}_{\rm{t}} $—Tensile strength in transverse direction; $ {Y}_{\rm{c}} $—Compressive strength in transverse direction; ${S}_{\!{12}}$—Longitudinal shear strength; ${S}_{\!{23}}$—Transverse shear strength.
    下载: 导出CSV

    表  4  三维角联锁CF/Al复合材料基体合金的弹塑性力学性能参数

    Table  4.   Elastoplastic properties of the matrix alloy in 3D angle interlocking woven CF/Al composite

    $ {E}_{\rm{m}} $/MPa$ {\nu }_{\rm{m}} $$ {\sigma }_{\rm{m}}^{\rm{y}} $/MPa$ {\sigma }_{\rm{m}}^{\rm{u}} $/MPa$ {\varepsilon }_{0}^{\rm{Pl}} $$ {\varepsilon }_{f}^{\rm{Pl}} $
    797000.33100.0159.10.150.75
    Notes: $ {E}_{\rm{m}} $—Young's modulus; $ {\nu }_{\rm{m}} $—Poisson’s ratio; $ {\sigma }_{\rm{m}}^{\rm{y}} $—Yield strength; $ {\sigma }_{\rm{m}}^{\rm{u}} $—Ultimate strength; $ {\varepsilon }_{0}^{\rm{Pl}} $—Critical strain for damage initiation; $ {\varepsilon }_{f}^{\rm{Pl}} $—Critical strain for failure.
    下载: 导出CSV

    表  5  三维角联锁CF/Al复合材料基体合金/纱线束界面结合性能参数

    Table  5.   Interfacial bonding properties between matrix alloy and yarns in 3D angle interlocking woven CF/Al composite

    $ {t}_{\rm{n}}^{0} $/MPa$ {t}_{\rm{s}}^{0} $/MPa$ {t}_{\rm{t}}^{0} $/MPa$ {\bar {\delta }}^{0} $/10−6 m$ {\bar {\delta }}^{\rm{f}} $/10−6 m
    16.09.59.50.080.72
    Notes: $ {t}_{\rm{n}}^{0} $—Peak stress purely normal to interface; $ {t}_{\rm{s}}^{0} $—Peak stress in the first shear direction; $ {t}_{\rm{t}}^{0} $—Peak stress in the second shear direction; $ {\bar {\delta }}^{0} $—Critical separation displacement for damage initiation; $ {\bar {\delta }}^{\rm{f}} $—Critical separation displacement for failure.
    下载: 导出CSV

    表  6  三维角联锁CF/Al复合材料经向和纬向拉伸力学性能模拟与试验结果

    Table  6.   Testing and simulating results of the mechanical properties of 3D angle interlocking woven CF/Al composite at warp and weft direction

    ResultWarp direction tensionWeft direction tension
    Initial modulus/GPaTensile strength/MPaFracture strain/%Initial modulus/MPaTensile strength/MPaFracture strain/%
    Testing 70.29±0.86 391.59±5.55 0.91±0.05 57.52±2.62 221.08±16.6 0.68±0.01
    Simulating 73.07 397.06 0.86 58.16 236.24 0.7086
    Error/% 3.96 1.40 −5.49 1.11 6.86 3.73
    下载: 导出CSV
  • [1] RAWAL S P. Metal-matrix composites for space applications[J]. The Journal of the Minerals, Metals & Materials Society,2001,53(4):14-17.
    [2] LI D, CHEN G, JIANG L, et al. Effect of thermal cycling on the mechanical properties of CF/Al composites[J]. Materials Science and Engineering A,2013,586(1):330-337.
    [3] LEE M, CHOI Y, SUGIO K, et al. Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process[J]. Composite Science and Technology,2014,97(16):1-5.
    [4] ZHOU Y, WANG W, XIA Y, et al. An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates[J]. Materials Science and Engineering A,2003,362(1-2):112-117. doi: 10.1016/S0921-5093(03)00214-4
    [5] JAQUESSON M, GIRARD A, VIALSETIF M H, et al. Tensile and fatigue behavior of Al-based metal matrix composites reinforced with continuous carbon or alumina fibers: Part I. quasi-unidirectional composites[J]. Metallurgical and Materials Transactions A,2004,35:3289-3305. doi: 10.1007/s11661-004-0071-2
    [6] WANG X, JIANG D, WU G, et al. Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite[J]. Materials Science and Engineering A,2008,497(1-2):31-36. doi: 10.1016/j.msea.2008.07.022
    [7] EVERETT R K. Metal matrix composites: Processing and Interfaces[M]. Pittsburgh: Academic Press, 1991.
    [8] DYZIA M, GROSZ A D, SLEZIONA J, HUFENBACH W, et al. Infiltration test of carbon fibres textile by modiefied AlSi9Cu(Fe) alloy[J]. Composites,2009,9(3):201-213.
    [9] ZHANG Y, YAN L, MIAO M, et al. Microstructure and mechanical properties of z-pinned carbon fiber reinforced aluminum alloy composites[J]. Material and Design,2015,86(5):872-877.
    [10] ALHASHMY H A, NGANBE M. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites[J]. Material and Design,2015,67:154-158. doi: 10.1016/j.matdes.2014.11.034
    [11] 周珍珍, 徐志锋, 余欢, 等. 编织结构对3D-Cf/Al 复合材料显微组织与力学性能的影响[J]. 中国有色金属学报, 2016, 26(4):773-781.

    ZHOU Zhenzhen, XU Zhifeng, YU Huan, et al. Effects of braiding structures on microstructure and mechanical properties of 3D-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals,2016,26(4):773-781(in Chinese).
    [12] 胡银生, 余欢, 王振军, 等. 织物结构对2.5D-Cf/Al复合材料微观组织与力学性能的影响[J]. 中国有色金属学报, 2018, 28(12):2512-2522.

    HU Yinsheng, YU Huan, WANG Zhenjun, et al. Effect of woven fabric structure on microstructure and mechanical properties of 2.5D-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals,2018,28(12):2512-2522(in Chinese).
    [13] ZHANG Y, WU G, CHEN G, et al. Microstructure and mechanical properties of 2D woven Grf/Al composites[J]. Transactions of Nonferrous Metals Society of China,2006,16:1509-1512.
    [14] MA YQ, QI L H, ZHENG W Q, et al. Effect of specific pressure on fabrication of 2D-Cf/Al composite by vacuum and pressure infiltration[J]. Transactions of Nonferrous Metals Society of China,2013,23:1915-1921. doi: 10.1016/S1003-6326(13)62677-1
    [15] 周计明, 郑武强, 齐乐华, 等. 真空吸渗挤压二维正交铺层复合材料压缩失效机制[J]. 上海大学学报, 2014, 20(1):75-82.

    ZHOU Jiming, ZHENG Wuqiang, QI Lehua, et al. Investigation on compressive failure mechanism of 2D cross-ply Cf/Al composites by extrusion directly following vacuum pressure infiltration process[J]. Journal of Shanghai University,2014,20(1):75-82(in Chinese).
    [16] HUFENBACH W, GUDE M, CZULAK A. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods[J]. Journal of Achievements in Materials and Manufacturing Engineering,2009,2(35):177-183.
    [17] YANG Q R, LIU J X, LI S K, et al. Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite[J]. Materials & Design,2014,57:442-448.
    [18] YANG Q R, LIU J X, LI S K, et al. Bending mechanical property and failure mechanisms of woven carbon fiber-reinforced aluminum alloy composite[J]. Rare Metals,2016,35(12):915-919. doi: 10.1007/s12598-014-0271-x
    [19] ZHANG J, LIU S, ZHANG Y, et al. Fabrication of woven carbon fibers reinforced Al-Mg (95-5wt%) matrix composites by an electromagnetic casting process[J]. Journal of Materials Processing Technology,2015,226:78-84. doi: 10.1016/j.jmatprotec.2015.06.040
    [20] ZHANG J, LIU S, LU Y, et al. Semisolid-rolling and annealing process of woven carbon fiber reinforced Al-matrix composites[J]. Journal of Materials Processing Technology,2017,33:623-629.
    [21] LEE S K, BYUN J H, HONG S H. Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites[J]. Materials Science and Engineering A,2003,347:346-358. doi: 10.1016/S0921-5093(02)00614-7
    [22] MCWILLIAMS B, DIBELKA J, YEN C. Multiscale modeling and characterization of inelastic deformation mechanisms in continuous fiber and 2D woven fabric reinforced metal matrix composites[J]. Materials Science and Engineering A,2014,618:142-152. doi: 10.1016/j.msea.2014.08.063
    [23] SHIRVANIMOGHADDAM K, HAMIM S U, AKBARI M, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties[J]. Composites: Part A,2017,92:70-96. doi: 10.1016/j.compositesa.2016.10.032
    [24] 王振军, 董敬涛, WANG Gui, 等. 2.5维织物Cf/Al复合材料制备及其经纬向拉伸变形力学行为研究[J]. 稀有金属材料与工程, 2017, 46(12):3744-3752.

    WANG Zhenjun, DONG Jingtao, WANG Gui, et al. Research on the preparation of 2.5D woven fabric Cf/Al composite and its tensile deformation behavior in warp/weft direction[J]. Rare Metal Materials and Engineering,2017,46(12):3744-3752(in Chinese).
    [25] ASTM. Standard Test Method for Tensile Properties of Fiber Reinforced Metal Matrix Composites: ASTM D3552-96[S]. West Conshohocken: ASTM International, 2007.
    [26] 聂明明, 徐志锋, 余欢, 等. 基体合金对连续M40石墨纤维/Al复合材料纤维损伤及断裂机制的影响[J]. 复合材料学报, 2016, 33(12):2797-2806.

    NIE Mingming, XU Zhifeng, YU Huan, et al. Effect of matrix alloy on fiber damage and fracture mechanism of continuous graphite fiber M40/Al composite[J]. Acta Materiae Compositae Sinica,2016,33(12):2797-2806(in Chinese).
    [27] CHAMIS C C. Simplified composite micromechanics equations for strength, fracture toughness, impact resistance and environmental effects, TM-83696[R]. Washington: NASA, 1984.
    [28] WANG Y C, HUANG Z M. Analytical micromechanics models for elastoplastic behavior of long fibrous composites: A critical review and comparative study[J]. Materials,2018,11:10.
    [29] 周金秋, 王振军, 杨思远, 等. 连续石墨纤维增强铝基复合材料准静态拉伸损伤演化与断裂力学行为[J]. 复合材料学报, 2020, 37(4):907-918.

    ZHOU Jinqiu, WANG Zhenjun, YANG Siyuan, et al. Damage evolution and fracture behaviors of continuous CF/Al composites subjected to quasi-static tensile loading[J]. Acta Materiae Compositae Sinica,2020,37(4):907-918(in Chinese).
    [30] WANG Z J, WANG Z Y, XIONG B W, et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading[J]. Journal of Alloys and Compounds,2020,815:152459. doi: 10.1016/j.jallcom.2019.152459
    [31] WANG Z J, YANG S Y, DU Z H, et al. Micromechanical modeling of damage evolution and mechanical behaviors of CF/Al composites under transverse and longitudinal Tensile Loadings[J]. Materials,2019,12(19):3133. doi: 10.3390/ma12193133
    [32] SONG J, WEN W D, CUI H T. Experimental and numerical investigation of mechanical behaviors of 2.5D woven composites at ambient and un-ambient temperatures[J]. Composite Structures,2018,201:699-720. doi: 10.1016/j.compstruct.2018.06.054
    [33] LU Z X, ZHOU Y, YANG Z Y, et al. Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension[J]. Computational Materials Science,2013,79:485-494. doi: 10.1016/j.commatsci.2013.07.003
    [34] OKABE T, NISHIKAWA M, TOYOSHIMA H. A periodic unit-cell simulation of fiber arrangement dependence on the transverse tensile failure in unidirectional carbon fiber reinforced composites[J]. International Journal of Solids and Structures,2011,48:2948-2959. doi: 10.1016/j.ijsolstr.2011.06.012
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  852
  • HTML全文浏览量:  421
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 录用日期:  2020-10-30
  • 网络出版日期:  2020-11-17
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回