留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击位置对复合材料加筋板冲击后压缩行为影响试验

任涛 彭昂 吴大可 陆方舟 蔡登安 周光明

任涛, 彭昂, 吴大可, 等. 冲击位置对复合材料加筋板冲击后压缩行为影响试验[J]. 复合材料学报, 2022, 39(2): 788-801. doi: 10.13801/j.cnki.fhclxb.20210328.001
引用本文: 任涛, 彭昂, 吴大可, 等. 冲击位置对复合材料加筋板冲击后压缩行为影响试验[J]. 复合材料学报, 2022, 39(2): 788-801. doi: 10.13801/j.cnki.fhclxb.20210328.001
REN Tao, PENG Ang, WU Dake, et al. Experimental study on the influence of impact positions on compression-after-impact behavior of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 788-801. doi: 10.13801/j.cnki.fhclxb.20210328.001
Citation: REN Tao, PENG Ang, WU Dake, et al. Experimental study on the influence of impact positions on compression-after-impact behavior of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 788-801. doi: 10.13801/j.cnki.fhclxb.20210328.001

冲击位置对复合材料加筋板冲击后压缩行为影响试验

doi: 10.13801/j.cnki.fhclxb.20210328.001
基金项目: 国家自然科学基金(52005256);江苏省基础研究计划(自然科学基金)(BK20190394);江苏省博士后科研资助计划项目(2020Z437);中央高校基本科研业务费专项资金(NS2019001);机械结构力学及控制国家重点实验室开放课题(MCMS-E-0220Y02);南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20200104);江苏高校优势学科建设工程资助项目(PAPD)
详细信息
    通讯作者:

    周光明,博士,教授,博士生导师,研究方向为先进复合材料结构设计及工程问题的计算机建模 E-mail:zhougm@nuaa.edu.cn

  • 中图分类号: TB332

Experimental study on the influence of impact positions on compression-after-impact behavior of composite stiffened panels

  • 摘要: 对低速冲击 (LVI)载荷下不同冲击位置对T型复合材料加筋板损伤容限的影响进行了试验研究。选取了2个典型冲击位置,即:两筋间蒙皮和筋条长桁边缘,引入目视可检冲击损伤(VID)。借助目视及无损检测手段观察到不同冲击位置处的损伤存在显著差异。相比于蒙皮冲击,长桁边缘冲击处的损伤形式更复杂,表现为:纤维断裂、基体开裂、分层、层剥离及界面脱粘。分别对完好、蒙皮冲击和长桁冲击试件进行冲击后压缩试验(CAI)。结果表明:蒙皮冲击件与完好件失效过程极为相似,由于试验夹具刀口的存在,限制了加筋板的变形,诱发了损伤起始,导致最终的结构破坏;而长桁冲击件展示出截然不同的失效机制,损伤从冲击位置沿试件横向扩展,促使结构整体失效的提前发生,显著降低了加筋板的剩余压缩强度。此外,引入数字图像相关技术(DIC)对压缩过程中试件的变形进行监测,并与传统的接触式测量结果进行对比,验证了该测试方法应用于材料力学性能测试的可行性与优越性。

     

  • 图  1  复合材料T型加筋板构型

    Figure  1.  Configuration of T-stiffened composite panel

    图  2  筋条横截面

    Figure  2.  Cross section of the stiffener

    图  3  落锤式冲击试验装置

    Figure  3.  Drop-weight impact test instrument

    图  4  加筋板的冲击位置

    Figure  4.  Impact location of stiffened panels

    图  5  试验件夹持方式

    Figure  5.  Clamping method of specimen

    图  6  复合材料加筋板完好件应变片分布和编号

    Figure  6.  Strain gauges distributions and numbers of intact composite stiffened panels

    图  7  位移计分布和编号

    Figure  7.  Displacement sensors distributions and numbers

    图  8  复合材料加筋板试件表面散斑

    Figure  8.  Speckles on the surface of the composite stiffened panel specimen

    图  9  DIC在轴压试验中的应用

    Figure  9.  Application of DIC in axial compression test

    图  10  组B(在两筋间蒙皮中心处引入冲击损伤)的冲击损伤

    Figure  10.  Impact damage of group B (Introduce impact damage at the center of skin between two stiffeners)

    图  11  复合材料加筋板超声C扫图像

    Figure  11.  Ultrasound C scan images of composite stiffened panels

    图  12  组C(在筋条长桁边缘处引入冲击损伤)的冲击损伤

    Figure  12.  Impact damage of group C (Introduce impact damage at the stiffener flange tip)

    图  13  DIC与位移计测得的复合材料加筋板蒙皮面外位移对比

    Figure  13.  Comparison of out-of-plane displacements in skin of composite stiffened panels measured by DIC and displacement sensor

    图  14  不同组复合材料加筋板载荷-位移曲线及屈曲波形

    Figure  14.  Load-displacement curves and deformation patterns of stiffened composite panels from different groups

    图  15  试件A-2关键位置的载荷-应变曲线:(a)蒙皮处;(b)长桁两侧;(c)筋条腹板;(d)腹板下方对应蒙皮位置

    Figure  15.  Load-strain curves of critical positions of A-2 specimen: (a) On the skin; (b) Both sides of flanges; (c) On the stiffener webs; (d) Corresponding skin positions under the webs

    图  16  试件B-2关键位置的载荷-应变曲线:(a)蒙皮处;(b)长桁两侧;(c)筋条腹板;(d)腹板下方对应蒙皮位置

    Figure  16.  Load-strain curves of critical positions of B-2 specimen: (a) On the skin; (b) Both sides of flanges; (c) On the stiffener webs; (d) Corresponding skin positions under the webs

    图  17  试件C-1关键位置的载荷-应变曲线:(a)蒙皮处;(b)长桁两侧;(c)筋条腹板;(d)腹板下方对应蒙皮位置

    Figure  17.  Load-strain curves of critical positions of C-1 specimen: (a) On the skin; (b) Both sides of flanges; (c) On the stiffener webs; (d) Corresponding skin positions under the webs

    图  18  完好的复合材料加筋板破坏模式

    Figure  18.  Failure mode of intact stiffened composite panel

    图  19  蒙皮受冲击的复合材料加筋板破坏模式

    Figure  19.  Failure mode of stiffened composite panel with the skin impact damage

    图  20  筋条长桁边缘受冲击的复合材料加筋板破坏模式

    Figure  20.  Failure mode of stiffened composite panel with the flange tip impact damage

    表  1  碳纤维增强环氧树脂复合材料特性参数

    Table  1.   Material property parameters of carbon fiber reinforced epoxy resin composite

    MaterialPropertyValue
    CCF800/AC531 Longitudinal Young’s modulus E11/GPa 147
    Transverse Young’s modulus E22/GPa 9.25
    In-plane shear modulus G12/GPa 4.40
    Poisson’s ratio ν12 0.33
    CF8611/AC531 Longitudinal Young’s modulus E11/GPa 69
    Transverse Young’s modulus E22/GPa 67.9
    In-plane shear modulus G12/GPa 3.97
    Poisson’s ratio ν12 0.047
    下载: 导出CSV

    表  2  复合材料加筋板冲击损伤的详细测量值

    Table  2.   Detailed measurements of impact damage of composite stiffened panels

    SpecimenDent
    depth/mm
    Dent
    length/mm
    Dent
    width/mm
    B-1 1.962 14.10 12.84
    B-2 1.856 13.74 11.70
    B-3 1.752 13.26 11.44
    Average value 1.857 13.70 11.99
    C-1 2.520 19.20 14.50
    C-2 2.384 17.50 14.08
    C-3 4.360 19.50 14.50
    Average value 3.088 18.73 14.36
    Notes: Group B—Impacted at the center of skin between two stiffeners; Group C—Impacted at the stiffener flange tip.
    下载: 导出CSV

    表  3  复合材料加筋板冲击后压缩试验结果

    Table  3.   Compression-after-impact test results for stiffened composite panels

    SpecimenTypeGeneral buckling of stiffened panelsUltimate failure of stiffened panels
    Load/kNAverage load/kNLoad/kNAverage load /kNRelative change
    A-1 Intact 145 142.7 276.230 276.769
    A-2 143 275.689
    A-3 140 278.387
    B-1 The skin impact 148 143.7 267.247 271.181 −2.02%
    B-2 141 274.750
    B-3 142 271.545
    C-1 The flange tip impact 142 143.3 205.055 224.775 −18.79%
    C-2 145 237.844
    C-3 143 231.425
    下载: 导出CSV
  • [1] 蓝元沛, 关志东, 孟庆春. 复合材料飞机结构技术成熟度评价方法[J]. 复合材料学报, 2010, 27(3):150-154.

    LAN Yuanpei, GUAN Zhidong, MENG Qingchun. Evaluation method for technology maturity of composite aircraft structure[J]. Acta Materiae Compositae Sinica,2010,27(3):150-154(in Chinese).
    [2] ZHANG Shengming, KHAN Imtaz. Buckling and ultimate capability of plates and stiffened panels in axial compression[J]. Marine Structures,2009,22(4):791-808. doi: 10.1016/j.marstruc.2009.09.001
    [3] WEAVER P M, DRIESEN J R, ROBERTS P. Anisotropic effects in the compression buckling of laminated composite cylindrical shells[J]. Composites Science and Technology,2002,62(1):91-105. doi: 10.1016/S0266-3538(01)00186-5
    [4] BERTOLINI J, CASTANIE B, BARRAU J J, et al. An experimental and numerical study on omega stringer debonding[J]. Composite Structures,2008,86(1):233-242.
    [5] GREENHALGH E, MEEKS C, CLARKE A, et al. The effect of defects on the performance of post-buckled CFRP stringer-stiffened panels[J]. Composites Part A: Applied Science and Manufacturing,2003,34(7):623-633. doi: 10.1016/S1359-835X(03)00098-8
    [6] LIU Jingze, FEI Qingguo, JIANG Dong, et al. Experimental and numerical investigation on static and dynamic characteristics for curvilinearly stiffened plates using DST–BK model[J]. International Journal of Mechanical Sciences,2020,169:105286. doi: 10.1016/j.ijmecsci.2019.105286
    [7] YE Yaoyao, ZHU Weidong, JIANG Junxia, et al. Design and optimization of composite sub-stiffened panels[J]. Composite Structures,2020,240:112084. doi: 10.1016/j.compstruct.2020.112084
    [8] ORIFICI A C, THOMSON R S, DEGENHARDT R, et al. Degradation investigation in a postbuckling composite stiffened fuselage panel[J]. Composite Structures,2007,82(2):217-224.
    [9] KONG Xiangshao, YANG Yi, GAN Jin, et al. Experimental and numerical investigation on the detailed buckling process of similar stiffened panels subjected to in-plane compressive load[J]. Thin-Walled Structures,2020,148:106620. doi: 10.1016/j.tws.2020.106620
    [10] TURON A, DAVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics,2006,74(10):1665-1682.
    [11] 孔斌, 陈普会, 陈炎. 复合材料整体加筋板轴压后屈曲失效评估方法[J]. 复合材料学报, 2014, 31(3):765-771.

    KONG Bin, CHEN Puhui, CHEN Yan. Post-buckling failure evaluation method of integrated composite stiffened panels under uniaxial compression[J]. Acta Materiae Compo-sitae Sinica,2014,31(3):765-771(in Chinese).
    [12] YETMAN J E, SOBEY A J, BLAKE J I R, et al. Investigation into skin stiffener debonding of top-hat stiffened composite structures[J]. Composite Structures,2015,132:1168-1181. doi: 10.1016/j.compstruct.2015.06.061
    [13] ORIFICI A C, DE ZARATE ALBERDI I O, THOMSON R S, et al. Compression and post-buckling damage growth and collapse analysis of flat composite stiffened panels[J]. Composites Science and Technology,2008,68(15):3150-3160.
    [14] CAPRINO G. Residual strength prediction of impacted CFRP laminates[J]. Journal of Composite Materials,1984,18(6):508-518. doi: 10.1177/002199838401800601
    [15] CHOI H Y, CHANG F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials,1992,26(14):2132-2167.
    [16] WISHEART M, RICHARDSON M. The finite element analysis of impact induced delamination in composite materials using a novel interface element[J]. Composites Part A: Applied Science and Manufacturing,1998,29(3):301-313. doi: 10.1016/S1359-835X(97)00080-8
    [17] MITREVSKI T, MARSHALL I H, THOMSON R. The influence of impactor shape on the damage to composite laminates[J]. Composite Structures,2006,76:116-122. doi: 10.1016/j.compstruct.2006.06.017
    [18] OUYANG Tian, BAO Rui, SUN Wei, et al. A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures[J]. Thin-Walled Structures,2020,148:106588. doi: 10.1016/j.tws.2019.106588
    [19] FENG Yu, ZHANG Haoyu, TAN Xiangfei, et al. Effect of impact damage positions on the buckling and post-buckling behaviors of stiffened composite panel[J]. Composite Structures,2016,155:184-196. doi: 10.1016/j.compstruct.2016.08.012
    [20] TAN Riming, GUAN Zhidong, SUN Wei, et al. Experiment investigation on impact damage and influences on compression behaviors of single T-stiffened composite panels[J]. Composite Structures,2018,203:486-497. doi: 10.1016/j.compstruct.2018.07.038
    [21] LI N, CHEN P H. Experimental investigation on edge impact damage and compression-after-impact (CAI) behavior of stiffened composite panels[J]. Composite Structures,2016,138:134-150. doi: 10.1016/j.compstruct.2015.11.060
    [22] 阳奥, 陈普会, 孔斌, 等. 数字图像相关技术在复合材料加筋曲板压缩试验中的应用[J]. 复合材料学报, 2020, 37(10):2439-2451.

    YANG Ao, CHEN Puhui, KONG Bin, et al. Application of digital image correlation technology in compression test of stringer stiffened composite curved panels[J]. Acta Materiae Compositae Sinica,2020,37(10):2439-2451(in Chinese).
    [23] ZIMMERMANN R, KLEIN H, KLING A. Buckling and postbuckling of stringer stiffened fibre composite curved panels-Tests and computations[J]. Composite Structures,2005,73(2):150-161.
    [24] FEATHERSTON C A, MORTIMER J, EATON M, et al. The dynamic buckling of stiffened panels-A study using high speed digital image correlation[J]. Applied Mechanics and Materials,2010,972:331-336.
    [25] TAN Riming, XU Jifeng, GUAN Zhidong, et al. Experimental study on effect of impact locations on damage formation and compression behavior of stiffened composite panels with L-shaped stiffener[J]. Thin-Walled Structures,2020,150:106707. doi: 10.1016/j.tws.2020.106707
    [26] ASTM. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D 7136[S]. West conshohocken: ASTM, 2007.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  1029
  • HTML全文浏览量:  397
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-03-23
  • 录用日期:  2021-03-24
  • 网络出版日期:  2021-03-29
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回