留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究

王遥 曹东风 胡海晓 冀运东 宋培豪 李书欣

王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究[J]. 复合材料学报, 2020, 37(0): 1-11
引用本文: 王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究[J]. 复合材料学报, 2020, 37(0): 1-11
王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究[J]. 复合材料学报, 2020, 37(0): 1-11
Citation: 王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究[J]. 复合材料学报, 2020, 37(0): 1-11

单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究

基金项目: 中国博士后科学基金(2018M632933);中央高校基本科研业务费专项资金(2018III066GX);湖北省自然科学基金(2017cFc809);湖北省对外科技合作项目(2013BHE008)
详细信息
    通讯作者:

    曹东风,博士,副研究员,主要研究方向为先进复合材料计算力学 E-mail:cao_dongf@whut.edu.cn

    胡海晓,博士,副教授,主要研究方向为复合材料材料-工艺-结构一体化应用 E-mail:yiming9008@126.com

  • 中图分类号: TB330.1

Effect of single-bolt repair on compression capability of carbon/epoxy resin composite laminates containing impact damage: Experimental study

  • 摘要: 开展了单钉修复对含冲击损伤复合材料层合板压缩承载能力影响的试验研究。试验测试了3种不同能量冲击后碳纤维/环氧树脂复合材料层合板的压缩承载能力以及失效模式,测定了单螺栓对层合板压缩承载能力的修复效率,并借助数字图像相关方法(Digital Image Correlation, DIC)表征手段揭示了单螺栓修复对含冲击损伤结构失效行为的影响。结果表明:冲击后层合板的压缩承载能力随着冲击能量的增加而减小,冲击损伤破坏了层合板结构的对称性,并导致结构在加载初期呈现出非对称的局部屈曲变形特征,局部屈曲诱发、加剧分层损伤扩展;单螺栓修复能有效恢复结构的整体对称性,在一定程度上抑制含冲击损伤层合板的局部屈曲,达到可观的修复效率。该工作为复合材料紧固件修理方案的制订及修理损伤容限的定义提供一定的指导意义。
  • 图  1  实验方案流程

    Figure  1.  Flow chart of experiment program

    图  2  冲击后压缩夹具

    Figure  2.  Fixture for compression after impact

    图  3  压缩试验与DIC设备

    Figure  3.  CAI test and DIC equipment

    图  4  紧固件几何尺寸

    Figure  4.  Dimensions of fastener

    图  5  15 J能量冲击后碳纤维/环氧树脂复合材料层合板试件正反表面不可恢复变形

    Figure  5.  Unrecoverable deformation of carbon fiber/epoxy resin composite laminate specimen after impact of 15 J

    图  6  碳纤维/环氧树脂复合材料层合板冲击后C扫描图像

    Figure  6.  C-scan image after impact of carbon fiber/epoxy resin composite laminate

    图  7  冲击前后试件断面光学显微图像(工况D-15)

    Figure  7.  Micrograph of cross-section before and after impact (case of D-15)

    图  8  碳纤维/环氧树脂复合材料层合板冲击后压缩承载力对比

    Figure  8.  Compression bearing capacity comparison of carbon fiber/epoxy resin composite laminates after impact with 3 energies

    图  9  碳纤维/环氧树脂复合材料层合板试件位移-载荷曲线(工况D-15)

    Figure  9.  Load-displacement curve of carbon fiber/epoxy resin composite laminates (case D-15)

    图  10  加载过程碳纤维/环氧树脂复合材料层合板试件冲击正面的DIC云图(工况D-15)

    Figure  10.  DIC images of impact surface of carbon fiber/epoxy resin composite laminates during loading(case D-15)

    图  11  碳纤维/环氧树脂复合材料层合板冲击反面的DIC云图(工况D-15)

    Figure  11.  DIC images of back surface of carbon fiber/epoxy resin composite laminates (case D-15)

    图  12  压缩过程中碳纤维/环氧树脂复合材料层合板冲击正反面的变形示意图(工况D-15)

    Figure  12.  Deformation schematic of impact and back surface of carbon fiber/epoxy resin composite laminates during compression (case D-15)

    图  13  工况D-15的碳纤维/环氧树脂复合材料层合板最终失效模式

    Figure  13.  Final failure mode of carbon fiber/epoxy resin composite laminates under case D-15

    图  14  单钉螺栓修补碳纤维/环氧树脂复合材料层合板试件

    Figure  14.  Single bolt-repaired carbon fiber/epoxy resin composite laminate specimen

    图  15  三种能量冲击损伤修复前后的碳纤维/环氧树脂复合材料层合板承载能力对比

    Figure  15.  Compression bearing capacity comparison of carbon fiber/epoxy resin composite laminate specimens after impact with 3 energies

    图  16  R-15工况下碳纤维/环氧树脂复合材料层合板位移-载荷曲线

    Figure  16.  Load-displacement curve of carbon fiber/epoxy resin composite laminates under case R-15

    图  17  碳纤维/环氧树脂复合材料层合板冲击面的DIC云图(工况R-15)

    Figure  17.  DIC images of back surface of carbon fiber/epoxy resin composite laminates (case R-15)

    图  18  碳纤维/环氧树脂复合材料层合板冲击背面的DIC云图(工况R-15)

    Figure  18.  DIC images of back surface of carbon fiber/epoxy resin composite laminates (case R-15)

    图  19  压缩过程中碳纤维/环氧树脂复合材料层合板冲击正反面的变形示意图(工况R-15)

    Figure  19.  Deformation schematic of impact and back surface of carbon fiber/epoxy resin composite laminates during compression (case R-15)

    图  20  工况R-15-1的碳纤维/环氧树脂复合材料层合板最终失效模式

    Figure  20.  Final failure mode of carbon fiber/epoxy resin composite laminates under case R-15-1

    图  21  损伤和单钉修复对碳纤维/环氧树脂复合材料层合板压缩刚度的影响

    Figure  21.  Effect of damage and bolt repair on compression stiffness of carbon fiber/epoxy resin composite laminates

    表  1  工况设置

    Table  1.   Case of test

    SetImpact energy/JFastener
    I
    D-9 9 No
    D-15 15 No
    D-30 30 No
    R-9 9 Yes
    R-15 15 Yes
    R-30 30 Yes
    Notes: I—Intact specimens; D—Damaged specimens; R—Repaired specimens.
    下载: 导出CSV
  • [1] 沈真. 碳纤维复合材料在飞机结构中的应用[J]. 高科技纤维与应用, 2010, 35(4):1-4+24. doi:  10.3969/j.issn.1007-9815.2010.04.001

    SHEN Zhen. Application of carbon fiber composites in aircraft structures[J]. Hi-Tech Fiber & Application,2010,35(4):1-4+24(in Chinese). doi:  10.3969/j.issn.1007-9815.2010.04.001
    [2] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [3] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING Liying, BAO Jianwen, LI Songming, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Composite Sinica,2016,33(7):1327-1338(in Chinese).
    [4] Federal Aviation Administration, Compo-site aircraft structure advisory Circular AC No: 20-107B, Change 1, [R]. U. S A Department of Transportation 24 August 2010.
    [5] ABISSET E, DAGHIA F, SUN X C, et al. Interaction of inter and intralaminar damage in scaled quasi-static indentation tests: Part 1-Experiments[J]. Composite Structures,2016,136:712-726. doi:  10.1016/j.compstruct.2015.09.061
    [6] GLISZCZYNSKI A, KUBIAK T, WAWER K. Barely visible impact damages of GFRP laminate profiles-An experimental study[J]. Composites Part B: Engineering,2019,158:10-17. doi:  10.1016/j.compositesb.2018.09.044
    [7] SUN X C, HALLETT S R. Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations[J]. International Journal of Impact Engineering,2017,109:178-195. doi:  10.1016/j.ijimpeng.2017.06.008
    [8] TALREJA R, PHAN N. Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage[J]. Composite Structures,2019,219:1-7.
    [9] ABIR M R, TAY T E, RIDHA M, LEE H P. On the relationship between failure mechanism and compression after impact (CAI) strength in composites[J]. Composite Structures,2017,182:242-250. doi:  10.1016/j.compstruct.2017.09.038
    [10] LIU H, FALZON B G, TAN W. Predicting the Compression-After-Impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2018,105:189-202. doi:  10.1016/j.compositesa.2017.11.021
    [11] ROZYLO P, DEBSKI H, KUBIAK T. A model of low-velocity impact damage of composite plates subjected to Compression-After-Impact (CAI) testing[J]. Composite Structures,2017,181:158-170. doi:  10.1016/j.compstruct.2017.08.097
    [12] AMARO A M, REIS P N B, MOURA M F S F D. Buckling analysis of laminated composite plates submitted to compression after impact[J]. Fibers and Polymers,2014,15:560-565. doi:  10.1007/s12221-014-0560-x
    [13] BULL D J, SPEARING S M, SINCLAIR I. Observations of damage development from compression-after-impact experi-ments using ex situ micro-focus computed tomography[J]. Composites Science and Technology,2014,97:106-114. doi:  10.1016/j.compscitech.2014.04.008
    [14] SUN X C, HALLETT S R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2018,104A:41-59.
    [15] BAKER A A, HARMAN A, WHITTINGHAM B. Micrographic studies on adhesively bonded scarf repairs to thick composite aircraft structure[J]. Composites, Part A: Applied Science and Manufacturing,2009,40A(9):1419-1432.
    [16] CAMPILHO R D S G, MOURA M F S F, PINTO A M G, et al. Modelling the tensile fracture behavior of CFRP scarf repairs[J]. Composites Part B: Engineering,2009,40:149-157. doi:  10.1016/j.compositesb.2008.10.008
    [17] GUNNION A J, HERSZBERG I. Param-etric study of scarf joints in composite structures[J]. Composite Structures,2006,75:364-376. doi:  10.1016/j.compstruct.2006.04.053
    [18] HAUTIER M, LEVEQUE D, HUCHETTE C, et al. Investigation of composite repair method by liquid resin infiltration[J]. Plastics, Rubber and Composites,2010,39:200-207. doi:  10.1179/174328910X12647080902411
    [19] WU K W, LEE C L, CHANG Y C, et al. Compressive strength of delaminated and repaired composite plates[J]. Materials Chemistry and Physics,1996,43:173-177. doi:  10.1016/0254-0584(95)01633-6
    [20] GARCIA R, LINKE M, NEBLINGER S, et al. An infiltration strategy to repair Carbon Fiber Reinforced Polymer (CFRP) parts[J]. Procedia Manufacturing,2017,13:380-387. doi:  10.1016/j.promfg.2017.09.024
    [21] PARK S S, CHOE H S, KWAK B S, et al. Micro-bolt repair for delaminated composite plate under compression[J]. Composite Structures,2018,192:245-254. doi:  10.1016/j.compstruct.2018.02.087
    [22] KWAK B S, LEE G E, KANG G S, et al. An investigation of repair methods for delaminated composite laminate under flexural load[J]. Composite Structures,2019,215:249-257. doi:  10.1016/j.compstruct.2019.02.037
    [23] ASTM D7136/7136M. Standard Test Method for Measuring the Damage Resistance of a Fiber-reinforced Polymer Matrix Composite to a Drop-weight Impact Event[S]. West Conshohocken, PA, USA: ASTM International American Society for Testing and Materials; 2007.
    [24] ASTM D7137/D7137M-12. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates[S]. West Conshohocken, PA, USA: ASTM International American Society for Testing and Materials; 2012.
    [25] Chester R J and Clark G. Modelling of impact damage features in graphite/epoxy laminates[S]. Damage Detection in Composite Materials, ASTM, 1992.200: 12.
  • [1] 刘可心, 王蕾, 杨晨, 金松哲.  Ti3SiC2/Cu复合材料的制备与摩擦磨损性能, 复合材料学报. 2020, 37(11): 1-9.
    [2] 刘秀玉, 张冰, 韩祥祥, 刘亚辉, 赵石旭, 唐刚.  空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能, 复合材料学报. 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
    [3] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(): 1-8. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [4] 周文英, 张财华, 李旭, 张帆, 张祥林.  基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能, 复合材料学报. 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
    [5] 刘新, 陈铎, 何辉永, 孙涛, 武湛君.  热塑性颗粒-无机粒子协同增韧碳纤维增强环氧树脂复合材料, 复合材料学报. 2020, 37(8): 1904-1910. doi: 10.13801/j.cnki.fhclxb.20191113.006
    [6] 周典瑞, 高亮, 霍红宇, 张宝艳.  热塑性树脂基复合材料用碳纤维上浆剂研究进展, 复合材料学报. 2020, 37(8): 1785-1795. doi: 10.13801/j.cnki.fhclxb.20200507.001
    [7] 汤龙其, 令旭霞, 王士华, 郭帅, 龙柱.  聚吡咯/碳纤维纸电热复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1426-1433. doi: 10.13801/j.cnki.fhclxb.20191021.002
    [8] 吴佳奇, 李刚, 杨小平, 苏清福.  耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能, 复合材料学报. 2020, 37(7): 1505-1512. doi: 10.13801/j.cnki.fhclxb.20191211.001
    [9] 韩永森, 孙健, 张昕, 郭文敏, 李忠华.  微纳米SiC/环氧树脂复合材料的界面和非线性电导特性, 复合材料学报. 2020, 37(7): 1562-1570. doi: 10.13801/j.cnki.fhclxb.20191120.002
    [10] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. 2020, 37(12): 1-18. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [11] 周浪, 王涛.  石墨烯/功能聚合物复合材料, 复合材料学报. 2020, 37(5): 997-1014. doi: 10.13801/j.cnki.fhclxb.20190919.001
    [12] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [13] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1243-1250. doi: 10.13801/j.cnki.fhclxb.20191014.002
    [14] 顾升, 王雪, 徐国祺.  基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料, 复合材料学报. 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
    [15] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [16] 史俊伟, 刘松平, 荀国立, 杨刚.  孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响, 复合材料学报. 2020, 37(6): 1295-1311. doi: 10.13801/j.cnki.fhclxb.20191008.001
    [17] 何柏灵, 葛东云.  复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用, 复合材料学报. 2020, 37(8): 2065-2075. doi: 10.13801/j.cnki.fhclxb.20191030.004
    [18] 栾建泽, 宋学伟, 那景新, 谭伟, 慕文龙.  服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响, 复合材料学报. 2020, 37(5): 1088-1095. doi: 10.13801/j.cnki.fhclxb.20190708.001
    [19] 郭丽君, 陆方舟, 李想, 蔡登安, 张庆茂, 陈建农, 刘伟先, 周光明.  碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制, 复合材料学报. 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
    [20] 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证, 复合材料学报. 2010, 27(5): 108-115.
  • 加载中
计量
  • 文章访问数:  184
  • HTML全文浏览量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 录用日期:  2020-01-09

目录

    /

    返回文章
    返回