留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2溶胶对P(St-MAA)光子晶体生色结构的稳固性增强作用

李壮 金梦婷 须秋洁 柴丽琴 周岚 刘国金

李壮, 金梦婷, 须秋洁, 等. SiO2溶胶对P(St-MAA)光子晶体生色结构的稳固性增强作用[J]. 复合材料学报, 2022, 39(2): 637-644. doi: 10.13801/j.cnki.fhclxb.20210412.001
引用本文: 李壮, 金梦婷, 须秋洁, 等. SiO2溶胶对P(St-MAA)光子晶体生色结构的稳固性增强作用[J]. 复合材料学报, 2022, 39(2): 637-644. doi: 10.13801/j.cnki.fhclxb.20210412.001
LI Zhuang, JIN Mengting, XU Qiujie, et al. Stability enhancement of P(St-MAA) photonic crystals with structural colors by using SiO2 Sol[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 637-644. doi: 10.13801/j.cnki.fhclxb.20210412.001
Citation: LI Zhuang, JIN Mengting, XU Qiujie, et al. Stability enhancement of P(St-MAA) photonic crystals with structural colors by using SiO2 Sol[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 637-644. doi: 10.13801/j.cnki.fhclxb.20210412.001

SiO2溶胶对P(St-MAA)光子晶体生色结构的稳固性增强作用

doi: 10.13801/j.cnki.fhclxb.20210412.001
基金项目: 国家自然科学基金(52003242;51773181);浙江省自然科学基金(LQ19E030022;LY20E030006);浙江理工大学科研启动基金(18012212-Y;19012134-Y)
详细信息
    通讯作者:

    刘国金,博士,讲师,硕士生导师,研究方向为光子晶体 E-mail:guojin900618@163.com

  • 中图分类号: O734

Stability enhancement of P(St-MAA) photonic crystals with structural colors by using SiO2 Sol

  • 摘要: 提出采用后填充方式制备兼具稳固性和良好结构色效果的复合光子晶体。通过采用胶体微球自组装法制备图案化聚(苯乙烯-甲基丙烯酸)(P(St-MAA))光子晶体生色结构,然后利用SiO2溶胶对P(St-MAA)光子晶体进行填充。优化了SiO2的填充条件,并对比了填充前后光子晶体生色结构的结构色效果和稳固性变化情况。结果表明:粒径分别为230 nm、250 nm和287 nm的P(St-MAA)胶体微球可构筑得到排列规整、结构色明亮的光子晶体,但晶体层的稳固性不佳;当SiO2浓度不超过30wt%,填充时间不超过5 min时,可制备得到结构色仍旧较明亮的SiO2-P(St-MAA)复合光子晶体;在相同的稳固性测试条件下,复合光子晶体稳固性明显提升,结构色效果不易消减,这主要归因于SiO2起到了类似“桥梁”的作用,加强了相邻P(St-MAA)胶体微球间的黏连,并增强了光子晶体层与基材间的黏性。本研究将为构筑高质量光子晶体提供新思路,有望推动光子晶体生色结构的实际应用。

     

  • 图  1  不同粒径聚(苯乙烯-甲基丙烯酸)(P(St-MAA))胶体微球的FESEM图像

    Figure  1.  FESEM images of poly(styrene-methacrylic acid) (P(St-MAA)) colloidal microspheres with different particle sizes

    图  2  不同粒径P(St-MAA)胶体微球自组装的P(St-MAA)光子晶体的视频显微镜图像和FESEM图像

    Figure  2.  Video microscope images and FESEM images of self-assembled P(St-MAA) photonic crystals of P(St-MAA) colloidal microspheres with different particle sizes

    图  3  水浸润前后P(St-MAA)光子晶体的结构色

    Figure  3.  Structural color of P(St-MAA) photonic crystal before and after water infiltration

    图  4  不同浓度SiO2溶胶制备的P(St-MAA)和复合光子晶体的视频显微镜图像和数码相片

    Figure  4.  Video microscope images and digital photos of P(St-MAA) and composite photonic crystals prepared by different concentrations of SiO2 sol

    图  5  不同浓度SiO2溶胶制备的P(St-MAA)和复合光子晶体的FESEM图像

    Figure  5.  FESEM images of P(St-MAA) and composite photonic crystals prepared by different concentrations of SiO2 sol

    图  6  不同填充时间制备的P(St-MAA)和复合光子晶体的视频显微镜图像和数码相片

    Figure  6.  Video microscope images and digital photos of P(St-MAA) and composite photonic crystals prepared with different filling time

    图  7  不同填充时间制备的P(St-MAA)和复合光子晶体的FESEM图像

    Figure  7.  FESEM images of P(St-MAA) and composite photonic crystals prepared with different filling time

    图  8  水洗前后P(St-MAA)光子晶体和SiO2-P(St-MAA)复合光子晶体的视频显微镜图像和FESEM图像

    Figure  8.  Video microscope images and FESEM images of P(St-MAA) photonic crystals and SiO2-P(St-MAA) composite photonic crystals before and after washing

    图  9  折叠试验:(a) P(St-MAA)光子晶体;(b) SiO2-P(St-MAA)复合光子晶体

    Figure  9.  Folding test: (a) P(St-MAA) photonic crystal; (b) SiO2-P(St-MAA) composite photonic crystal

    图  10  摩擦试验:(a) P(St-MAA)光子晶体;(b) SiO2-P(St-MAA)复合光子晶体

    Figure  10.  Friction test: (a) P(St-MAA) photonic crystal; (b) SiO2-P(St-MAA) composite photonic crystal

    图  11  粘拉试验:(a) P(St-MAA)光子晶体;(b) SiO2-P(St-MAA)复合光子晶体

    Figure  11.  Adhesion test: (a) P(St-MAA) photonic crystal; (b) SiO2-P(St-MAA) composite photonic crystal

    图  12  P(St-MMA)光子晶体 (a)、SiO2-P(St-MAA)复合光子晶体 (b) 硅元素的元素分布图

    Figure  12.  Element distribution diagrams with silicon of P(St-MMA) photonic crystal (a) and SiO2-P(St-MAA) composite photonic crystal (b)

    图  13  填充法原理示意图

    Figure  13.  Schematic diagram of filling method

    表  1  材料编号及SiO2含量

    Table  1.   Material number and content of SiO2

    Serial number12345
    Content/wt%1020304050
    下载: 导出CSV
  • [1] 张骜, 袁伟, 周宁, 等. 结构生色及其染整应用前景(一)[J]. 印染, 2012, 38(13):44-47. doi: 10.3969/j.issn.1000-4017.2012.13.015

    ZHANG Y, YUAN W, ZHOU N, et al. Structural coloration and its application prospects in dyeing and finishing (1)[J]. Printing and Dyeing,2012,38(13):44-47(in Chinese). doi: 10.3969/j.issn.1000-4017.2012.13.015
    [2] JIAN Y, WANG R, FENG L, et al. Mechanochromic response of the barbules in peacock tail feather[J]. Optical Materials,2018,75:74-78.
    [3] CORKERY R. W, TYRODE E C. On the colour of wing scales in butterflies: Iridescence and preferred orientation of single gyroid photonic crystals[J]. Interface Focus,2017,7(4):20160154. doi: 10.1098/rsfs.2016.0154
    [4] VARGAS W E, AVENDANO E, HERNAN M, et al. Photonic crystal characterization of the cuticles of chrysina chrysargyrea and chrysina optima jewel scarab beetles[J]. Biomimetics,2018,3(4):1-20. doi: 10.3390/biomimetics3040030
    [5] SHEN Y, RINNERBAUER V, WANG I, et al. Structural colors from Fano resonances[J]. ACS Photonics,2015,2(1):27-32. doi: 10.1021/ph500400w
    [6] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58(20):2059-2062. doi: 10.1103/PhysRevLett.58.2059
    [7] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters,1987,58(23):2486-2490. doi: 10.1103/PhysRevLett.58.2486
    [8] 张克勤, 袁伟, 张骜. 光子晶体的结构色[J]. 功能材料信息, 2010, 7(5):39-44.

    ZHANG K Q, YUAN W, ZHANG Y. The structure color of photonic crystals[J]. Functional Materials Information,2010,7(5):39-44(in Chinese).
    [9] WANG W, FAN X, LI F, et al. Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display[J]. Advanced Optical Materials,2018,6(4):1701093.
    [10] KAWASAKI D, OISHI R, KOBAYASHI N, et al. Highly sensitive optical ion sensor with ionic liquid-based colorimetric membrane/photonic crystal hybrid structure[J]. Scientific Reports, 2020, 10(1): 73-80.
    [11] 付国栋, 刘国金, 黄江峰, 等. 蚕丝织物上光子晶体自组装过程研究[J]. 浙江理工大学学报, 2013(4):467-470.

    FU G D, LIU G J, HUANG J F, et al. Research on the self-assembly process of photonic crystals on silk fabric[J]. Journal of Zhejiang Sci-Tech University,2013(4):467-470(in Chinese).
    [12] 董道鹏, 田野, 具本植, 等. 基于光子晶体响应材料对环境污染物检测的研究进展[J]. 染料与染色, 2017, 54(1):54-62.

    DONG D P, TIAN Y, JU B Z, et al. Research prgress on the detection of environmental pollutants based on photonic crystal response materials[J]. Dyes and Dyeing,2017,54(1):54-62(in Chinese).
    [13] LI F, JOSEPHSON D P, STEIN A. Colloidal assembly: The road from particles to colloidal molecules and crystals[J]. Angewandte Chemie International Edition,2011,50(2):360-388. doi: 10.1002/anie.201001451
    [14] YAVUZ G, ZILLE A, SEVENTEKIN N, et al. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals[J]. Carbohydrate Polymers, 2018, 193: 343-352.
    [15] SHI X, HE J, XIE X, et al. Photonic crystals with vivid structure color and robust mechanical strength[J]. Dyes and Pigments,2019,165:137-143. doi: 10.1016/j.dyepig.2019.02.023
    [16] LI Y C, ZHOU L, LIU G J, et al. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2018,444:145.
    [17] ZHOU L, LIU G, WU Y, et al. The synthesis of core-shell monodisperse P(St-MAA) microspheres and fabrication of photonic crystals structure with tunable colors on polyester farics[J]. Fibers & Polymers,2014,15(6):1112-1122.
    [18] BERNSMANN F, BALL V, ADDIEGO F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution[J]. Langmuir,2011,27(6):2819-2825. doi: 10.1021/la104981s
    [19] AGUIRRE C I, REGUERA E, STEIN A. Tunable colors in opals and inverse opal photonic crystals[J]. Advanced Functional Materials,2010,20(16):2565-2578. doi: 10.1002/adfm.201000143
    [20] JIANG P, BERTONE J F, HWANG K S, et al. Single-crystal colloidal multilayers of controlled thickness[J]. Chemistry of Materials,1999,11(8):2132-2140.
    [21] TIAN E, CUI L, WANG J, et al. Tough photonic crystals fabricated by photo-crosslinkage of latex spheres[J]. Macromol Rapid Commun, 2009, 30(7): 509–514.
    [22] LI Q, ZHANG Y, SHI L, et al. Additive mixing and conformal coating of noniridescent structural colors with robust mechanical properties fabricated by atomization depo-sition[J]. ACS Nano,2018,12(4):3095-3102. doi: 10.1021/acsnano.7b08259
    [23] MENG Y, TANG B, JU B, et al. Multiple colors output on voile through 3D colloidal crystals with robust mechanical properties[J]. ACS Applied Materials Interfaces,2017,9(3):3024-3029. doi: 10.1021/acsami.6b14819
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  654
  • HTML全文浏览量:  403
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 修回日期:  2021-03-26
  • 录用日期:  2021-04-01
  • 网络出版日期:  2021-04-12
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回