留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波包能量比变化率偏差的复合材料层板空气耦合超声概率损伤成像

肖佳辰 卢超 林俊明 陈果

肖佳辰, 卢超, 林俊明, 等. 基于小波包能量比变化率偏差的复合材料层板空气耦合超声概率损伤成像[J]. 复合材料学报, 2021, 38(8): 2635-2645. doi: 10.13801/j.cnki.fhclxb.20201109.001
引用本文: 肖佳辰, 卢超, 林俊明, 等. 基于小波包能量比变化率偏差的复合材料层板空气耦合超声概率损伤成像[J]. 复合材料学报, 2021, 38(8): 2635-2645. doi: 10.13801/j.cnki.fhclxb.20201109.001
XIAO Jiachen, LU Chao, LIN Junming, et al. Air coupled ultrasonic probabilistic damage imaging of composite laminates based on wavelet packet energy relative variation deviation[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2635-2645. doi: 10.13801/j.cnki.fhclxb.20201109.001
Citation: XIAO Jiachen, LU Chao, LIN Junming, et al. Air coupled ultrasonic probabilistic damage imaging of composite laminates based on wavelet packet energy relative variation deviation[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2635-2645. doi: 10.13801/j.cnki.fhclxb.20201109.001

基于小波包能量比变化率偏差的复合材料层板空气耦合超声概率损伤成像

doi: 10.13801/j.cnki.fhclxb.20201109.001
基金项目: 国家自然科学基金(11374134;51705231);江西省自然科学基金(20192ACBL20052);江西省科技厅科技计划(20192BCD40028);无损检测技术教育部重点实验室开放基金(EW201980446)
详细信息
    通讯作者:

    卢超,博士,教授,研究方向为超声检测及仪器  E-mail:luchaoniat@163.com

  • 中图分类号: TB33;TB559

Air coupled ultrasonic probabilistic damage imaging of composite laminates based on wavelet packet energy relative variation deviation

  • 摘要: 传统椭圆概率损伤成像使用信号幅值差或能量差作为特征参量,对损伤识别不够敏感且抗噪性能较差。为提高损伤识别的敏感程度,提出采用小波包能量比变化率偏差(Energy relative variation deviation,ERVD)作为损伤因子。选取合适的探头入射倾斜角度,使用空气耦合超声探头在复合材料层板中激励单一的Lamb波模态,对采集的扫查信号进行小波包分解,根据结构损伤前后的信号特征变化选取特征频带,计算损伤指数进行椭圆概率损伤成像,并模拟不同噪声环境对比不同损伤因子的成像效果差异。实验结果表明,选取小波包能量比变化率偏差作为损伤因子,具有较强的损伤识别敏感性和抗噪性能。使用此损伤因子进行空气耦合超声概率损伤成像,可提高复合材料损伤的定位和成像效果。

     

  • 图  1  三层小波包分解示意图

    Figure  1.  Diagram of three level wavelet packet decomposition

    图  2  概率损伤成像算法示意图

    Figure  2.  Diagram of probability damage imaging algorithm

    图  3  厚度为4 mm的碳纤维增强树脂复合材料(CFRP)复合材料层板空气耦合超声入射角度频散曲线

    Figure  3.  Dispersion curve of air coupled ultrasonic incidence angle of carbon fiber reinforced plastics (CFRP) composite laminate with 4 mm thickness

    图  4  空气耦合超声检测系统示意图

    Figure  4.  Schematic diagram of air-coupled ultrasonic testing system

    图  5  CFRP层板二维傅里叶变换结果与理论结果对比

    Figure  5.  Comparison of two dimensional Fourier transform results with theoretical results of CFRP composite laminate

    图  6  CFRP层板A0模态兰姆波无损伤信号和损伤信号时域图

    Figure  6.  Time domain diagram of A0 mode Lamb wave undamaged signal and damage signal of CFRP composite laminate

    图  7  CFRP层板小波包分解后各频段频谱图

    Figure  7.  Frequency spectrum of each frequency band after wavelet packet decomposition of CFRP composite laminate

    图  8  CFRP层板能量比变化率偏差损伤因子(SERVDI)随扫描位置变化关系曲线

    Figure  8.  Relationship curves of energy relative variation deviation damage index (${S_{{\rm{ERVDI}}}}$) with scanning position of CFRP composite laminate

    图  9  CFRP层板超声C扫描与能量比变化率偏差损伤因子SERVDI成像结果对比

    Figure  9.  Comparison of ultrasound C-scan and energy ratio change rate deviation damage factor SERVDI imaging results of CFRP composite laminate

    图  10  CFRP层板有、无损伤信号加噪声响应信号

    Figure  10.  Damage and Undamage signal adding noise response signal of CFRP composite laminate

    图  11  CFRP层板SERVDI在不同环境噪声下的损伤成像

    Figure  11.  Damage imaging of SERVDI of CFRP composite laminate under different environmental noises

    图  12  CFRP层板基于经验模态分解-相关系数所定义的损伤因子(IEDI)随扫描位置变化关系曲线

    Figure  12.  Relationship curves of intrinsic mode function energy damage index (IEDI) with scanning position of CFRP composite laminate

    图  13  CFRP层板IEDI在不同环境噪声下的损伤成像

    Figure  13.  Damage imaging of IEDI of CFRP composite laminate under different environmental noises

    表  1  CFRP层板损伤前后各频段信号能量

    Table  1.   Signal energy of each frequency band before and after damage of CFRP composite laminate

    Sub
    band
    Energy before
    damage/${{\rm{V}}^2}$
    Energy after
    damage/${{\rm{V}}^2}$
    Energy ratio
    change/%
    $x_3^1$ 39.0691 6.9306 0.2203
    $x_3^2$ 3.5042 0.6390 0.2091
    $x_3^3$ 0.0809 0.0149 0.0065
    $x_3^4$ 0.0080 0.0017 0.0036
    $x_3^5$ 0.0014 2.832×10−4 0.0003
    $x_3^6$ 1.640×10−4 5.287×10−5 3.123×10−4
    $x_3^7$ 2.311×10−5 2.352×10−5 2.559×10−4
    $x_3^8$ 2.333×10−5 2.366×10−5 2.572×10−4
    下载: 导出CSV

    表  2  CFRP层板不同损伤因子定位结果对比

    Table  2.   Comparison of imaging localization results of different damage factors of CFRP composite laminate

    Noise levelActual positionERVDI positionAbsolute error/mmIEDI positionAbsolute error/mm
    (x,y)(x,y)(x,y)
    No noise (32,32) (31.5,32) 0.5 (33,32) 1
    6 dB (32,32) (31.5,32) 0.5 (33,32) 1
    3 dB (32,32) (32,31.5) 0.5 (32.5,32) 0.5
    1 dB (32,32) (32,31.5) 0.5 (33.5,32) 1.5
    0.1 dB (32,32) (32.5,31.5) 0.7 (33,32) 1
    下载: 导出CSV

    表  3  CFRP层板不同损伤因子定量结果对比

    Table  3.   Comparison of quantitative results of different damage factors of CFRP composite laminate

    Noise levelActual sizeERVDI sizeError/mmIEDI positionError/mm
    x/mmy/mmx/mmy/mmx/mmy/mmx/mmy/mmx/mmy/mm
    No noise 10 10 10.6 10.1 0.6 0.1 15 16 5 6
    6 dB 10 10 10.6 10.1 0.6 0.1 15 15.5 5 5.5
    3 dB 10 10 10.6 10.1 0.6 0.1 15.5 15.5 5.5 5.5
    1 dB 10 10 10.6 10.1 0.6 0.1 15 16.5 5 6.5
    0.1 dB 10 10 10.6 10.6 0.6 0.6 15.5 16.5 5.5 6.5
    下载: 导出CSV
  • [1] 刘松平, 刘菲菲, 史俊伟, 等. 复合材料冲击损伤高分辨率超声成像检测与损伤行为分析[J]. 机械工程学报, 2013, 49(22):16-23.

    LIU Songping, LIU Feifei, SHI Junwei, et al. High resolution ultrasonic imaging evaluation and behavior analysis of impact damages in composites[J]. Journalof Mechanical Engineering,2013,49(22):16-23(in Chinese).
    [2] LAU Kintak, YUAN Libo, ZHOU Limin, et al. Strain monitoring in FRP laminates and concrete beams using FBG sensor[J]. Composites Structures, 2001, 51(1): 9-20.
    [3] HUA Jiadong, LIN Jing, ZENG Liang. High-resolution damage detection based on local signal difference co-efficient model[J]. Structural Health Monitoring,2015,14(1):20-34.
    [4] SURIANI M J, ALI A, SAPUAN S M, et al. Non-destructive techniques (NDT) in composite materials[J]. Key Engineering Materials,2011,462-463:918-924. doi: 10.4028/www.scientific.net/KEM.462-463.918
    [5] GUO Weichao, ZHAO Huaishan, GAO Xinqin, et al. An efficient representative for object recognition in structural health monitoring[J]. The International Journal of Advanced Manufacturing Technology,2018,94:3239-3250. doi: 10.1007/s00170-016-9309-6
    [6] LIU Zenghua, YU Hongtao, FAN Junwei, et al. Baseline-free delamination inspection in composite plates by synthesizing non-contact air-coupled Lamb wave scan method and virtual time reversal algorithm[J]. Smart Materials and Structures. 2015, 24(4): 045014.
    [7] 李骥, 李力, 邓勇刚, 等. 空气耦合超声换能器的频域声场研究[J]. 机械工程学报, 2019, 55(10):10-16. doi: 10.3901/JME.2019.10.010

    LI Ji, LI Li, DENG Yonggang, et al. Study on acoustic field of air-coupled ultrasonic transducer in frequency domain[J]. Journal of Mechanical Engineering,2019,55(10):10-16(in Chinese). doi: 10.3901/JME.2019.10.010
    [8] 饶璐雅, 陈果, 卢超, 等. 碳纤维复合材料层板冲击损伤的空气耦合兰姆波成像检测[J]. 宇航材料工艺, 2017, 47(5):69-74.

    RAO Luya, CHEN Guo, LU Chao, et al. Imaging of CFRP plate impact damage using air-coupled lamb waves[J]. Aerospace Materials and Technology,2017,47(5):69-74(in Chinese).
    [9] KAZYS R, MAZEIKA L, ZUKAUSKAS E. Investigation of accurate imaging of the defects in composite materials using ultrasonic air-coupled technique[J]. International Journal of Materials and Product Technology,2011,41(1-3):105-116.
    [10] 常俊杰, 卢超, 川嶋紘一郎. 非接触空气耦合超声波的材料无损评价与检测[J]. 浙江理工大学学报, 2015, 33(7):532-536, 542.

    CHANG Junjie, LU Chao, KAWASHIMA Kouitirou. Nondestructive material evaluation and testing based on noncont-act air-coupled ultrasonics[J]. Journal of Zhejiang Sci-Tech University,2015,33(7):532-536, 542(in Chinese).
    [11] 刘增华, 樊军伟, 何存富, 等. 基于概率损伤算法的复合材料板空气耦合Lamb波扫描成像[J]. 复合材料学报, 2015, 32(1):227-235.

    LIU Zenghua, FAN Junwei, HE Cunfu, et al. Scanning imaging of composite plate using air-coupled Lamb waves based on probabilistic damage algorithm[J]. Acta Materiae Composite Sinica,2015,32(1):227-235(in Chinese).
    [12] KABBAN C M S, GREENWELL B M, DESIMIO M P, et al. The probability of detection for structural health monitoring systems: Repeated measures data[J]. Structural Health Monitoring,2015,14(3):252-264. doi: 10.1177/1475921714566530
    [13] WU Zhanjun, LIU Kehai, WANG Yishou, et al. Valiation and evaluation of damage identification using probability-based diagnostic imaging on a stiffened composite panel[J]. Journal of Intelligent Material Systems and Structures,2015,26(16):2181-2195. doi: 10.1177/1045389X14549873
    [14] 张海燕, 刘镇清, 吕东辉. 全局矩阵法及其在层状各向异性复合板中Lamb波传播特性研究中的应用[J]. 复合材料学报, 2004, 21(2):111-116. doi: 10.3321/j.issn:1000-3851.2004.02.020

    ZHANG Haiyan, LIU Zhenqing, LV Donghui. Global matrix and its application to study on Lamb wave propagation in layered anisotropic composite plates[J]. Acta Materiae Composite Sinica,2004,21(2):111-116(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.02.020
    [15] 刘镇清, 他得安. 用二维傅里叶变换识别兰姆波模式的研究[J]. 声学技术, 2000, 19(4):212-214, 219. doi: 10.3969/j.issn.1000-3630.2000.04.019

    LIU Zhenqing, TA Dean. Mode identify of Lamb wave by means of 2D-FFT[J]. Technical Acoustics,2000,19(4):212-214, 219(in Chinese). doi: 10.3969/j.issn.1000-3630.2000.04.019
    [16] 严宏, 周丽. 基于损伤存在概率成像方法的复合材料结构损伤识别[J]. 振动与冲击, 2012, 31(13):76-80. doi: 10.3969/j.issn.1000-3835.2012.13.016

    YAN Hong, ZHOU Li. Damage identification of composite structures based on reconstruction algorithm for probabilistic inspection of damage[J]. Journal of Vibration and Shock,2012,31(13):76-80(in Chinese). doi: 10.3969/j.issn.1000-3835.2012.13.016
    [17] 张倩昀, 张华, 赵银燕. 复合材料冲击损伤监测的概率成像方法[J]. 应用声学, 2016, 35(5):426-430.

    ZHANG Qianyun, ZHANG Hua, ZHAO Yinyan. A probability imaging method of composite impact damage monitoring[J]. Applied Acoustics,2016,35(5):426-430(in Chinese).
    [18] 苏晨辉, 姜明顺, 梁建英, 等. 强噪声下碳纤维增强树脂复合材料结构Lamb波层析损伤成像方法[J]. 复合材料学报, 2020, 37(4):886-895.

    SU Chenhui, JIANG Mingshun, LIANG Jianying, et al. Lamb wave tomography damage imaging of composite structures in strong noise environment[J]. Acta Materiae Compositae Sinica,2020,37(4):886-895(in Chinese).
    [19] 万陶磊, 常俊杰, 曾雪峰, 等. 基于经验模态分 解和相关系数对玻璃纤维增强聚合物复合材料板的损伤识别及扫查成像[J]. 复合材料学报, 2020, 37(8): 1921-1931.

    WAN Taolei, CHANG Junjie, ZENG Xuefeng, et al. Damage identification and scanning imaging of glass fiber reinforced polymer composite plates based on empirical mode decomposition and correlateion coefficient[J]. Acta Materiae Composite Sinica, 2020, 37(8): 1921-1931(in Chinese).
    [20] 任宜春, 张杰峰, 刘哲峰. 钢筋混凝土梁损伤的小波包识别方法[J]. 振动. 测试与诊断, 2011, 31(5):605-609, 665.

    REN Yichun, ZHANG Jiefeng, LIU Zhefeng. Damage identification of reinforced concrete beam based on wavelet packet[J]. Journal of Vibration, Measurement & Diagnosis,2011,31(5):605-609, 665(in Chinese).
    [21] 丁幼亮, 李爱群. 基于振动测试与小波包分析的结构损伤预警[J]. 力学学报, 2006(5):639-644. doi: 10.3321/j.issn:0459-1879.2006.05.010

    DING Youliang, LI Aiqun. Structural damage early warning based on vibration testing and wavelet packet analysis[J]. Chinese Journal of Theoretical and Applied Mechanics,2006(5):639-644(in Chinese). doi: 10.3321/j.issn:0459-1879.2006.05.010
    [22] 张凯南, 张立茂, 吴贤国, 等. 基于小波包能量谱的地铁隧道健康监测预警[J]. 铁道标准设计, 2018, 62(12):130-135.

    ZHANG Kainan, ZHANG Limao, WU Xianguo, et al. Subway tunnel health alarming and warning method based on wavelet packet energy spectrum[J]. Railway Standard Design,2018,62(12):130-135(in Chinese).
    [23] HU Keting, LIU Zhigang, LIN Shuangshuang. Wavelet entropy-based traction inverter open switch fault diagnosis in high-speed railways[J]. Entropy,2016,18(3):78. doi: 10.3390/e18030078
    [24] 王鑫, 孟昭博, 梁志闯. 基于小波包能量谱的西安钟楼木结构的损伤识别[J]. 应用力学学报, 2020, 37(3):1245-1252, 1403-1404.

    WANG Xin, MENG Zhaobo, LIANG Zhichuang. Damaged identification of Xi’an bell tower wood structures based on wavelet packet energy spectrum[J]. Chinese Journal of Applied Mechanics,2020,37(3):1245-1252, 1403-1404(in Chinese).
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  965
  • HTML全文浏览量:  407
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 录用日期:  2020-10-26
  • 网络出版日期:  2020-11-09
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回