留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响

曹金营 曹贺 欧阳求保 张荻

曹金营, 曹贺, 欧阳求保, 等. 多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响[J]. 复合材料学报, 2020, 37(11): 1-9 doi:  10.13801/j.cnki.fhclxb.20200306.002
引用本文: 曹金营, 曹贺, 欧阳求保, 等. 多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响[J]. 复合材料学报, 2020, 37(11): 1-9 doi:  10.13801/j.cnki.fhclxb.20200306.002
Jinying CAO, He CAO, Qiubao OUYANG, Di ZHANG. Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200306.002
Citation: Jinying CAO, He CAO, Qiubao OUYANG, Di ZHANG. Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200306.002

多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20200306.002
基金项目: 国家重点研发计划(2018YFB0704400)
详细信息
    通讯作者:

    欧阳求保,博士,研究员,博士生导师,研究方向为金属基复合材料 E-mail:oyqb@sjtu.edu.cn

  • 中图分类号: TB331

Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites

  • 摘要: 采用搅拌摩擦加工(FSP)技术对SiC颗粒增强2A14铝合金(SiCP/2A14)复合材料进行处理,通过金相表征、电子背散射衍射(EBSD)、SEM、硬度测试及力学拉伸实验等分析了多道次搅拌摩擦加工对SiCP/2A14复合材料微观组织、力学性能及超塑性变形行为的影响。研究表明:经搅拌摩擦加工后,SiCP/2A14复合材料搅拌区内SiC颗粒分布明显均匀,晶粒细化,其中2道次搅拌摩擦加工的SiCP/2A14复合材料的晶粒尺寸最小,为3.14 μm。随着搅拌加工道次的增加,SiCP/2A14复合材料的硬度降低,室温抗拉强度和高温延伸率均先升高后降低,其中2道次搅拌摩擦加工的SiCP/2A14复合材料的室温抗拉强度为319 MPa,相较于未经FSP处理的SiCP/2A14复合材料提高了41%,在500℃、应变速率为1.0×10−3 s−1条件下高温延伸率为609%,相较于未经FSP处理的SiCP/2A14复合材料提高了133%。
  • 图  1  搅拌摩擦加工(FSP)示意图

    Figure  1.  Schematic diagram of friction stir processing(FSP)

    图  2  FSP前后搅拌头对比

    Figure  2.  Comparison of welding tool before and after FSP

    图  3  SiC颗粒增强2A14铝合金(SiCP/2A14)复合材料拉伸试样的形状和尺寸

    Figure  3.  Shape and dimension of SiC particle reinforced 2A14 aluminum alloy(SiCP/2A14) composites tensile specimen((a) Room temperature tensile specimen; (b) High temperature tensile specimen)

    图  4  1道次FSP的SiCP/2A14复合材料不同区域的金相组织

    Figure  4.  Optical microstructure of different zone of SiCP/2A14 composites by 1-pass FSP

    BM—Base material; HAZ—Heat-affected zone; SZ—Stirred zone

    图  5  不同道次FSP的SiCP/2A14复合材料SiC颗粒的尺寸分布

    Figure  5.  Size distribution of SiC particles of SiCP/2A14 composites with different pass of FSP

    图  6  SiCP/2A14复合材料母材及不同道次FSP的SiCP/2A14复合材料的电子背散射衍射(EBSD)图像

    Figure  6.  Electron backscatter diffraction(EBSD) images of SiCP/2A14 composite BM and SiCP/2A14 composites by different pass of FSP

    图  7  不同道次FSP的SiCP/2A14复合材的显微硬度分布

    Figure  7.  Microhardness distribution of SiCP/2A14 composites by different pass of FSP

    图  8  SiCP/2A14复合材料母材及不同道次FSP的SiCP/2A14复合材料的拉伸性能

    Figure  8.  Tensile properties of SiCP/2A14 composite BM and SiCP/2A14 composites by different pass of FSP

    图  9  SiCP/2A14复合材料母材及2道次和4道次FSP的SiCP/2A14复合材料拉伸断口的SEM图像

    Figure  9.  SEM images of tensile fracture of SiCP/2A14 composite BM and SiCP/2A14 composites by two-pass and four-pass FSP

    图  10  500℃、1×10–3 s–1应变速率条件下不同道次FSP的SiCP/2A14复合材料的延伸率

    Figure  10.  Elongation of SiCP/2A14 composites by different pass of FSP at 500℃ and strain rate of 1×10–3 s–1

    图  11  不同道次FSP的SiCP/2A14复合材料超塑性断裂后形貌

    Figure  11.  Superplastic fracture morphology of SiCP/2A14 composites by different pass of FSP

    表  1  2A14铝合金的化学成分及含量

    Table  1.   Chemical composition of 2A14 aluminum alloy wt/%

    SiCuMgMnFeZnTiNiAl
    0.6–1.23.9–4.80.4–0.80.4–1.00–0.7≤0.3≤0.15≤0.1Balance
    下载: 导出CSV

    表  2  SiCP/2A14复合材料母材及不同道次FSP的SiCP/2A14复合材料晶粒尺寸和高角度晶界(HAGB)含量

    Table  2.   Grain size and high angle grain boundary (HAGB) content of SiCP/2A14 composite BM and SiCP/2A14 composites with different pass of FSP

    Grain size/μmContent of HAGB/%
    BM 9.30 62.0
    1-pass FSP 4.73 86.9
    2-pass FSP 3.14 88.9
    3-pass FSP 5.56 86.5
    4-pass FSP 6.60 87.3
    下载: 导出CSV

    表  3  T6状态下SiCP/2A14复合材料室温拉伸性能

    Table  3.   Tensile properties of SiCP/2A14 composites in T6 state

    StateYield strength/MPaUltimate tensile strength/MPaElongation/
    %
    BM-T6 417 475 4.5
    2-pass-T6 536 587 3.4
    下载: 导出CSV

    表  4  未经FSP处理的SiCP/2A14复合材料在不同高温拉伸条件下的延伸率

    Table  4.   Elongation of SiCP/2A14 composites without FSP under different high temperature tensile conditions

    Temperature/℃Elongation/%
    1×10−3 s−11×10−2 s−11×10−1 s−1
    460 189 152 94
    480 203 194 118
    500 261 223 116
    520 220 158 43
    下载: 导出CSV
  • [1] SALIH O S, OU H, SUN W, et al. A review of friction stir welding of aluminium matrix composites[J]. Materials & Design,2015,86:61-71.
    [2] HASSAN A M, ALMOMANI M, QASIM T, et al. Effect of processing parameters on friction stir welded aluminum matrix composites wear behavior[J]. Materials and Manufacturing Processes,2012,27(12):1419-1423. doi:  10.1080/10426914.2012.700156
    [3] 李惠, 焦雷, 梅运柱, 等. 挤压对ZrB2/6063Al复合材料组织及其摩擦磨损特性的影响[J]. 稀有金属材料与工程, 2017, 46(10):3017-3022.

    LI H, JIAO L, MEI Y Z, et al. Effects of extrusion on microstructure and friction wear resistance in situ ZrB2/6063Al aluminum matrix composites[J]. Rare Metal Materials and Engineering,2017,46(10):3017-3022(in Chinese).
    [4] 肖伯律, 黄治冶, 马凯, 等. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1):59-72.

    XIAO B L, HUANG Z Y, MA K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites[J]. Acta Metallurgica Sinica,2019,55(1):59-72(in Chinese).
    [5] GHANDVAR H, FARAHANY S, IDRIS J. Wettability enhancement of SiCP in cast A356/SiCP composite using semisolid process[J]. Materials and Manufacturing Processes,2015,30(12):1442-1449. doi:  10.1080/10426914.2015.1004687
    [6] HASHIM J, LOONEY L, HASHMI M S J. Metal matrix composites: Production by the stir casting method[J]. Journal of Materials Processing Technology,1999,92-93(99):1-7.
    [7] 韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017, 34(8):1625-1635.

    HAN Y F, SUN X L, QIU P K, et al. Research and development of processing technology on particulate reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1625-1635(in Chinese).
    [8] 郭炜, 王渠东. 大塑性变形制备超细晶复合材料的研究进展[J]. 锻压技术, 2010, 35(1):4-9. doi:  10.3969/j.issn.1000-3940.2010.01.002

    GUO W, WANG Q D. Research progress of fabricating ultrafine-grained composites by severe plastic deformation[J]. Forging & Stamping Technology,2010,35(1):4-9(in Chinese). doi:  10.3969/j.issn.1000-3940.2010.01.002
    [9] MISHRA R S, MA Z Y, CHARIT I. Friction stir processing: A novel technique for fabrication of surface composite[J]. Materials Science & Engineering A,2003,341(1-2):307-310.
    [10] MISHRA R S, MAHONEY M W. Friction stir processing: A new grain refinement technique to achieve high strain rate superplasticity in commercial alloys[J]. Materials Science Forum,2001,357-359:507-514.
    [11] DU Z, TAN M J, GUO J F, et al. Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP)[J]. Materials Science & Engineering A,2016,667:125-131. doi:  10.1016/j.msea.2016.04.094
    [12] ZHANG W, DING H, CAI M, et al. Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti-6Al-4V alloy[J]. Materials Science & Engineering A,2018,727:90-96.
    [13] SAIKRISHNA N, PRADEEP K R G, MUNIRATHINAM B, et al. Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy[J]. Journal of Magnesium and Alloys,2016,4(1):68-76. doi:  10.1016/j.jma.2015.12.004
    [14] 陈菲菲, 黄宏军, 薛鹏, 等. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展[J]. 材料研究学报, 2018, 32(1):1-11. doi:  10.11901/1005.3093.2017.146

    CHEN F F, HUANG H J, XUE P, et al. Research progress on microstructure and mechanical properties of friction stir processed ultrafine-grained materials[J]. Chinese Journal of Materials Research,2018,32(1):1-11(in Chinese). doi:  10.11901/1005.3093.2017.146
    [15] JU X F, ZHANG F G, CHEN Z, et al. Microstructure of multi-pass friction-stir-processed Al-Zn-Mg-Cu alloys reinforced by nano-sized TiB2 particles and the effect of T6 heat treatment[J]. Metals,2017,7(12):530. doi:  10.3390/met7120530
    [16] ZHAO Y T, KAI X Z, CHEN G, et al. Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite[J]. Progress in Natural Science: Materials International,2016,26(1):69-77.
    [17] PRATER T. Friction stir welding of metal matrix composites for use in aerospace structures[J]. Acta Astronautica,2014,93:366-373. doi:  10.1016/j.actaastro.2013.07.023
    [18] OUYANG Q B, LI R X, WANG W L, et al. Light weight and high modulus aluminum matrix composite and its application into aerospace[J]. Materials Science Forum,2007,546-549:1551-1554.
    [19] ARORA H S, SINGH H, DHINDAW B K. Composite fabrication using friction stir processing—a review[J]. The International Journal of Advanced Manufacturing Technology,2012,61(9-12):1043-1055. doi:  10.1007/s00170-011-3758-8
    [20] 张璐, 张大童, 曹耿华. 搅拌摩擦加工制备羟基磷灰石增强镁复合材料的微观组织和力学性能[J]. 复合材料学报, 2019, 36(10):2341-2347.

    ZHANG L, ZHANG D T, CAO G H. Microstructure and mechanical properties of hydroxyapatite reinforced magnesium composites prepared by friction stirring processing[J]. Acta Materiae Compositae Sinica,2019,36(10):2341-2347(in Chinese).
    [21] XUE P, WANG B B, CHEN F F, et al. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Materials Characterization,2016,121:187-194. doi:  10.1016/j.matchar.2016.10.009
    [22] MOUSTAFA E. Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites[J]. Materials,2017,10(9):1053. doi:  10.3390/ma10091053
    [23] HUANG H Y, FAN G L, TAN Z Q, et al. Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy[J]. Materials Science & Engineering A,2017,699:55-61.
    [24] 焦雷, 赵玉涛, 王晓路, 等. 铝基复合材料高应变速率及低温超塑性的研究进展[J]. 材料导报, 2013, 27(3):119-123, 132. doi:  10.3969/j.issn.1005-023X.2013.03.025

    JIAO L, ZHAO Y T, WANG X L, et al. The development of high strain rate and low temperature superplasticity in aluminum matrix composites[J]. Materials Review,2013,27(3):119-123, 132(in Chinese). doi:  10.3969/j.issn.1005-023X.2013.03.025
  • [1] 汤龙其, 令旭霞, 王士华, 郭帅, 龙柱.  聚吡咯/碳纤维纸电热复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1426-1433. doi: 10.13801/j.cnki.fhclxb.20191021.002
    [2] 吴佳奇, 李刚, 杨小平, 苏清福.  耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能, 复合材料学报. 2020, 37(7): 1505-1512. doi: 10.13801/j.cnki.fhclxb.20191211.001
    [3] 李玮, 程先华.  稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响, 复合材料学报. 2020, 37(11): 1-9.
    [4] 王春红, 鹿超, 贾瑞婷, 陆鑫, 左恒峰, 王瑞.  洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能, 复合材料学报. 2020, 37(7): 1581-1589. doi: 10.13801/j.cnki.fhclxb.20191226.002
    [5] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [6] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1243-1250. doi: 10.13801/j.cnki.fhclxb.20191014.002
    [7] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [8] 朵永超, 钱晓明, 赵宝宝, 吕淑扬.  PET-PA6中空桔瓣超细纤维/Lyocell纤维非织造复合材料的制备与性能, 复合材料学报. 2020, 37(): 1-11.
    [9] 郭小农, 王丽, 罗永峰, 徐航, 邹家敏.  CFRP增强铝合金叠层复合材料短柱力学性能, 复合材料学报. 2020, 37(): 1-13.
    [10] 张庆法, 任夏瑾, 吴娟娟, 于文凡, 徐航, 蔡红珍.  活性炭/高密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200224.001
    [11] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(): 1-8. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [12] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
    [13] 张钊滟, 马帅, 卢鑫, 郑玉婴, 林腾飞.  壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200302.002
    [14] 陈宇飞, 代国庆, 田麒源, 董磊, 崔巍巍, 滕成君.  Al2O3与两种热塑性树脂协同改性双马来酰亚胺基复合材料微观结构与性能, 复合材料学报. 2020, 37(6): 1260-1267. doi: 10.13801/j.cnki.fhclxb.20190925.001
    [15] 王怡然, 高义民, 李烨飞, 赵四勇, 李梦婷.  石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响, 复合材料学报. 2020, 37(): 1-10.
    [16] 孙伟, 柏跃磊, 张强, 刘玉坤, 朱春城.  碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能, 复合材料学报. 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
    [17] 杨涛, 刘润爱, 王文先, 连俊杰, 郑凡林, 陈洪胜.  热轧高含量B4C颗粒增强Al基复合材料的成形性能, 复合材料学报. 2020, 37(): 1-10.
    [18] 张天刚, 庄怀风, 姚波, 张倩, 杨凡.  Y2O3对钛基激光熔覆层组织及性能的影响, 复合材料学报. 2020, 37(6): 1390-1400. doi: 10.13801/j.cnki.fhclxb.20190920.001
    [19] 杜春燕, 黄树涛, 于晓琳, 王全兆, 赵晖.  SiCp/Al复合材料微弧氧化膜的组织结构及性能, 复合材料学报. 2020, 37(8): 1960-1968. doi: 10.13801/j.cnki.fhclxb.20191223.001
    [20] 薛彦庆, 郝启堂, 李新雷, 魏典, 李博, 余量量.  Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响, 复合材料学报. 2020, 37(): 1-10.
  • 加载中
计量
  • 文章访问数:  190
  • HTML全文浏览量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 录用日期:  2020-02-28
  • 网络出版日期:  2020-03-06

目录

    /

    返回文章
    返回