留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建

黄露露 张艳玲 王挺 吴礼光 董春颖

黄露露, 张艳玲, 王挺, 等. 弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建[J]. 复合材料学报, 2020, 37(0): 1-10
引用本文: 黄露露, 张艳玲, 王挺, 等. 弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建[J]. 复合材料学报, 2020, 37(0): 1-10
黄露露, 张艳玲, 王挺, 等. 弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建[J]. 复合材料学报, 2020, 37(0): 1-10
Citation: 黄露露, 张艳玲, 王挺, 等. 弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建[J]. 复合材料学报, 2020, 37(0): 1-10

弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建

基金项目: 国家自然科学基金(21776250);浙江省自然科学基金(LY20B060001,LY19B060004)
详细信息
    通讯作者:

    王挺,博士,副研究员,研究方向为功能膜材料及其应用 E-mail:zjwtwaiting@hotmail.com

    吴礼光,博士,教授,研究方向为功能膜材料及其应用 E-mail:wulg64@hotmail.com

Fabrication of PVDF blending membranes filled by La-TiO2-RGO with photocatalytic activity

  • 摘要: 为提高聚偏氟乙烯(PVDF)超滤膜的通量及抗污染性能,首先利用吸附相反应技术耦合乙醇热处理制备La掺杂TiO2-还原氧化石墨烯(La-TiO2-RGO),再将其与PVDF共混制备抗污染超滤膜。结果表明,均匀分散于PVDF高分子中表面亲水的La-TiO2-RGO增多,其共混膜的水通量和抗污染性能也显著提升。当共混膜中出现团聚体,则削弱了其膜通量和抗污染性。在La-TiO2-RGO填充量为2.0wt%时,其共混膜具有最优纯水通量。最高纯水通量可达171L·m−2s·h−1,是PVDF膜的5倍以上,共混膜通量衰减速率也明显低于PVDF膜。另外,由于La-TiO2-RGO具有可见光催化活性,被污染后的共混膜经过光照处理后用水清洗,其膜通量恢复率比直接用水清洗后的通量恢复率大幅提高;热处理温度提升,La-TiO2-RGO弱可见光活性增强,光照后膜通量恢复率变大。但过高热处理温度抑制了La-TiO2-RGO中Ti3+形成且削弱其光活性,其共混膜通量恢复率反而下降;对于La-TiO2-RGO填充量为2.0wt%的共混膜,被污染后分别采用直接水清洗,仅光照处理2h,先光照处理2h后水清洗,膜通量恢复率分别为79%、52%、90%。
  • 图  1  不同温度热处理后La-TiO2-RGO的HRTEM照片(内插图为对应样品的TEM照片)

    Figure  1.  HRTEM images of La-TiO2-RGO treated by solvothermal reduction under different temperatures (The inset pictures are the TEM image of corresponding La-TiO2-RGO)

    图  2  不同温度热处理后La-TiO2-RGO的XRD图

    Figure  2.  XRD patterns of La-TiO2-RGO treated by solvothermal reduction under different temperatures

    图  3  不同温度热处理后La-TiO2-RGO的红外光谱

    Figure  3.  FTIR spectra of La-TiO2-RGOtreated by solvothermal reduction under different temperatures

    图  4  不同温度热处理后La-TiO2-RGO的XPS Ti2p图谱

    Figure  4.  XPS Ti2p profiles ofLa-TiO2-RGOtreated by solvothermal reduction under different temperatures

    图  5  可见光激发光电流响应曲线

    Figure  5.  Visible light excitation photocurrent response curve

    图  6  PVDF膜和不同PVDF共混膜的表面SEM照片

    Figure  6.  SEM images of the surface of PVDF and different PVDF blending membranes

    图  7  PVDF膜和不同PVDF共混膜的断面SEM照片

    Figure  7.  SEM images of the cross-section of PVDF and different PVDF blending membranes

    图  8  光照对PVDF和La-TiO2-RGO(170)/PVDF-2膜通量衰减过程的影响

    Figure  8.  The effect of irradiation on the flux decay process of PVDF and La-TiO2-RGO(170)/PVDF-2 blending membrane

    图  9  PVDF膜和不同PVDF共混膜的抗污染性能

    Figure  9.  Anti-fouling performance of PVDF and different blending membranes

    表  1  La-TiO2-RGO/PVDF共混膜制备过程中不同材料的加入量

    Table  1.   PVDF blending membranes filled La-TiO2-RGO and composition of casting solution

    MembranesLa-TiO2-RGOVDMAc/mLMass of PVDF/gMass of PEG 2 000/gLa-TiO2-RGO/PVDF/wt%Emax/MPa
    PVDF 50 7.5 2.5 0 75.3
    La-TiO2-RGO(160)/PVDF-1 La-TiO2-RGO(160) 50 7.5 2.5 1.0 86.7
    La-TiO2-RGO(160)/PVDF-2 La-TiO2-RGO(160) 50 7.5 2.5 2.0 98.9
    La-TiO2-RGO(160)/PVDF-3 La-TiO2-RGO(160) 50 7.5 2.5 3.0 88.1
    La-TiO2-RGO(170)/PVDF-1 La-TiO2-RGO(170) 50 7.5 2.5 1.0 87.2
    La-TiO2-RGO(170)/PVDF-2 La-TiO2-RGO(170) 50 7.5 2.5 2.0 101.1
    La-TiO2-RGO(170)/PVDF-3 La-TiO2-RGO(170) 50 7.5 2.5 3.0 89.5
    Note: Emax—Maximum tensile strength of the membrane;La-TiO2-RGO(160)/PVDF-(1/2/3) —The blending membranein which the mass ratio of La-TiO2-RGO (160) to PVDF is 1%/2%/3%; La-TiO2-RGO(170)/PVDF-(1/2/3) is also understood like this.
    下载: 导出CSV

    表  2  PVDF膜和不同La-TiO2-RGO/PVDF共混膜的孔隙结构、表面亲水角和膜通量

    Table  2.   Porosity, mean pore size and water contact angle of PVDF and different La-TiO2-RGO/PVDF blending membrane

    MembranesPorosity/%Mean pore size/nmWater contact angle/°Jw/(L·m−2·h−1)Jp/(L·m−2·h−1)
    PVDF 30.2 35.1 91.3 37.9 7.4
    La-TiO2-RGO(160)/PVDF-1 61.3 51.5 66.7 145.3 31.5
    La-TiO2-RGO(160)/PVDF-2 71.1 62.3 65.3 169.2 39.6
    La-TiO2-RGO(160)/PVDF-3 68.8 49.7 61.2 119.1 22.4
    La-TiO2-RGO(170)/PVDF-1 65.3 57.2 56.4 149.2 33.4
    La-TiO2-RGO(170)/PVDF-2 70.7 65.3 55.8 171.5 42.8
    La-TiO2-RGO(170)/PVDF-3 69.7 59.7 58.9 155.1 38.7
    Note: Jw—water flux; Jp— BSA flux.
    下载: 导出CSV

    表  3  PVDF和不同La-TiO2-RGO/PVDF共混膜的抗污染性能

    Table  3.   The anti-fouling performance of PVDF and differentLa-TiO2-RGO/PVDF blending membranes

    MembranesR/%RE/%REr/%
    PVDF 32.65 14.19 34.86
    La-TiO2-RGO(160)/PVDF-1 77.40 34.70 82.22
    La-TiO2-RGO(160)/PVDF-2 79.79 48.47 84.51
    La-TiO2-RGO(160)/PVDF-3 63.69 33.55 72.09
    La-TiO2-RGO(170)/PVDF-1 78.59 43.78 86.00
    La-TiO2-RGO(170)/PVDF-2 79.28 52.42 90.01
    La-TiO2-RGO(170)/PVDF-3 66.12 40.87 72.81
    Note: R—the flux recovery rates of contaminated membrane after washing; RE—the flux recovery rates after illumination for 2h; REr—the flux recovery rates after illumination for 2h then washing.
    下载: 导出CSV
  • [1] 朱振亚, 白成玲, 王磊, 等. 氧化石墨烯-氨基酰化酶/聚偏氟乙烯复合膜的制备及特性[J]. 复合材料学报, 2019, 36(11):2495-2501.

    ZHU Zhenya, BAI Chengling, WANG Lei, etal. Preparation and characteristic of graphene oxide-acylase/poly(vinylidenefluoride) composite membrane[J]. Acta MateriaeCompositaeSinica,2019,36(11):2495-2501(in Chinese).
    [2] 朱振亚, 白成玲, 王磊, 等. 磺化氧化石墨烯/聚砜复合膜的制备及抗污染性能[J]. 复合材料学报, 2019, 36(11):2515-2521.

    ZHU Zhenya, BAI Chengling, WANG Lei, et al. Preparation and antifouling property of sulfonated graphene oxide/polysulfone composite membrane[J]. Acta MateriaeCompositaeSinica,2019,36(11):2515-2521(in Chinese).
    [3] 冯雪婷, 杨盛, 文晨, 等. Ag2CO3@PVDF/氧化石墨烯超滤膜及其分离性能[J]. 化工学报, 2017, 68(5):2169-2176.

    FENG X T, YANG S, WEN C, et al. Ag2CO3@PVDF/GO ultrafiltration membrane for water purification[J]. CIESC Journal,2017,68(5):2169-2176(in Chinese).
    [4] VENAULTA A, CHOU Y N, WANG Y H, et al. A combined polymerization and self-assembling process for the fouling mitigation of PVDF membranes[J]. J. Membr. Sci.,2018,547:134-145. doi:  10.1016/j.memsci.2017.10.040
    [5] SUN C G, FENG X S. Enhancing the performance of PVDF membranes by hydrophilic surface modification via amine treatment[J]. Sep. Sci. Technol.,2017,185:94-102.
    [6] OTITOJU T A, AHMAD A L, OOI B S. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review[J]. J. Water Pro. Eng.,2016,14:41-59. doi:  10.1016/j.jwpe.2016.10.011
    [7] MOGHADAM M T, LESAGE G, MOHAMMADI T, et al. Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration[J]. J. Appl. Polym. Sci.,2015,132:41731-41745.
    [8] RANA D, MATSUURA T. Surface modifications for antifouling membranes[J]. Chem. Rev.,2010,110:2448-2471. doi:  10.1021/cr800208y
    [9] FARAHANIA M H D A, VATANPOUR V. A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: Clay, functionalized carbon nanotube, SiO2 and TiO2[J]. Sep. Purif. Technol.,2018,197:372-381. doi:  10.1016/j.seppur.2018.01.031
    [10] BET-MOUSHOUL E, MANSOURANAH E, FARHADI Y K, et al[J]. Chem. Eng. J., 2016, 283: 29-46.
    [11] CHEN F T, SHI X X, CHEN X B, et al. Preparation and characterization of amphiphilic copolymer PVDF-g-PMABS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane[J]. Appl. Surf. Sci.,2018,427:787-797. doi:  10.1016/j.apsusc.2017.08.096
    [12] YUAN H K, REN J. Preparation of poly(vinylidene fluoride)(PVDF)/acetalyzed poly(vinyl alcohol) ultrafiltration membrane with the enhanced hydrophilicity and the anti-fouling property[J]. Chem. Eng. Res. Des.,2017,121:348-359. doi:  10.1016/j.cherd.2017.03.023
    [13] LIU F, XU Y Y, ZHU B K, et al. Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes[J]. J. Membr. Sci.,2009,345:331-339. doi:  10.1016/j.memsci.2009.09.020
    [14] LI Y, ZHOU X J, SHEN S S[J]. Membr. Sci. Technol., 2016, 36(6): 70-77.
    [15] HEGAB H M, ZOU L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification[J]. Journal of Membrane Science,2015,484:95-106. doi:  10.1016/j.memsci.2015.03.011
    [16] ONG C S, GOH P S, LAU W J, et al. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review[J]. Desalination,2016,393:2-15. doi:  10.1016/j.desal.2016.01.007
    [17] XU Z W, WU T F, SHI J, et al. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment[J]. Journal of Membrane Science,2016,520:281-293. doi:  10.1016/j.memsci.2016.07.060
    [18] DAMODAR R A, YOU S J, CHOU H H. Study theself cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes[J]. Journal of Hazardous Materials,2009,172:1321-1328. doi:  10.1016/j.jhazmat.2009.07.139
    [19] MOGHADAM M T, LESAGE G, MOHAMMADI T, et al. Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration[J]. Appl. Polym. Sci.,2015,132:41731-41745.
    [20] LIAO C J, YU P, ZHAO J Q, et al. Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials[J]. Desalination. 2011, 272: 59-65.
    [21] WU L G, ZHANG X Y, WANG T, et al. Enhanced performance of polyvinylidene fluoride ultrafiltration membranes by incorporatingTiO2/graphene oxide[J]. Chemical Engineering Research and Design,2019,141:491-502.
    [22] 许智勇, 李冰蕊, 潘家豪, 等. TiO2复合催化剂弱光催化降解模拟海水中苯酚及其催化活性的影响[J]. 环境科学学报, 2017, 37(12):4593-4601.

    XU Z Y, LI B R, PAN J H, et al. Photodegradation of phenol in artificial seawater by TiO2 composite catalysts under weak UV irradiation[J]. Acta Scientiae Circumstantiae,2017,37(12):4593-4601(in Chinese).
    [23] LI J F, XU Z L, YANG H. Microporous polyethersulfone membranes prepared under the combined precipitation conditions with non-solvent additives, Polym[J]. Adv. Technol.,2008,19:251-257. doi:  10.1002/pat.982
    [24] FENG C S, SHI B L, LI G M, et al. Preparation and properties of microporous membrane from poly(vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation[J]. J. Membr. Sci.,2004,237:15-24. doi:  10.1016/j.memsci.2004.02.007
    [25] WANG T, ZHANG Y L, PAN J H, et al. Hydrothermal reduction of commercial P25 photocatalysts to expand their visible-light response and enhance their performance for photodegrading phenol in high-salinity wastewater[J]. Appl. Surf. Sci.,2019,480:896-904. doi:  10.1016/j.apsusc.2019.03.052
    [26] VATANPOUR V, MADAENI S S, MORADIAN R, et al. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite[J]. J. Membr. Sci.,2011,375(1):284-294.
    [27] SILVA T L S, MORALES-TORRES S, FIGUEIREDO J L, et al. Multi-walled carbon nanotube/PVDF blended membranes with sponge- and finger-like pores for direct contact membrane distillation[J]. Desalination,2015,357:233-245. doi:  10.1016/j.desal.2014.11.025
  • [1] 陈嘉磊, 刘琦, 胡亚一, 沈周元, 陈秀玲, 周先波.  纳米微球NH2—Fe3O4@聚乙二醇@ZnO的制备及其光催化性能, 复合材料学报. 2020, 37(7): 1639-1648. doi: 10.13801/j.cnki.fhclxb.20191107.001
    [2] 刘颖琪, 翁文斌, 岑檠, 肖维, 王齐, 丛燕青, 张轶.  FeVO4/Cu3(BTC)2(H2O)3异质结制备及光催化性能, 复合材料学报. 2020, 37(12): 1-9. doi: 10.13801/j.cnki.fhclxb.20200917.001
    [3] 孙范忱, 郭静, 杨强, 于跃, 赵亚博.  EDC-NHS交联壳聚糖-聚氧化乙烯-丝素蛋白静电纺丝纳米纤维的制备及生物相容性, 复合材料学报. 2020, 37(11): 1-8. doi: 10.13801/j.cnki.fhclxb.20200421.002
    [4] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [5] 胡晓兰, 周川, 代少伟, 刘文军, 李伟东, 周玉敬, 邱虹, 白华.  氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能, 复合材料学报. 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001
    [6] 张钊滟, 马帅, 卢鑫, 郑玉婴, 林腾飞.  壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200302.002
    [7] 刘文军, 严建龙, 周川, 李伟东, 周玉敬, 邱虹, 白华, 胡晓兰.  氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌, 复合材料学报. 2020, 37(): 1-12.
    [8] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. 2020, 37(7): 1571-1580. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [9] 杨贵荣, 王宁, 宋文明, 李亚敏, 马颖.  WC-氧化石墨烯/Ni复合熔覆层的制备及形成机制, 复合材料学报. 2020, 37(10): 1-12. doi: 10.13801/j.cnki.fhclxb.20200203.001
    [10] 任保胜, 王瑞, 任金芝, 李建权, 陈其凤.  纳米TiO2/碳化植物纤维复合材料的制备与光催化性能, 复合材料学报. 2020, 37(5): 1138-1147. doi: 10.13801/j.cnki.fhclxb.20190924.003
    [11] 牟明明, 袁光明, 陈世尧.  纳米TiO2对木纤维/聚丙烯复合材料抗紫外老化性能的影响, 复合材料学报. 2020, 37(6): 1268-1277. doi: 10.13801/j.cnki.fhclxb.20190929.004
    [12] 李俊, 伍文静, 孙金玺, 钱琦一, 唐逸飞, 张明洋.  电纺制备PAN/PVDF复合纤维膜及其空气过滤性能, 复合材料学报. 2020, 37(): 1-8.
    [13] 管宇鹏, 齐晓俊, 李帅, 贺莹莹, 刘红霞.  Pickering乳液技术制备纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯电磁屏蔽复合材料, 复合材料学报. 2020, 37(8): 1875-1883. doi: 10.13801/j.cnki.fhclxb.20191226.001
    [14] 丁梅杰, 张旭东, 魏智强, 黄尚攀, 姜金龙.  MnFe2O4/还原氧化石墨烯纳米复合材料的光学性能, 复合材料学报. 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002
    [15] 白成玲, 王磊, 朱振亚, 王旭东.  氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附, 复合材料学报. 2020, 37(6): 1458-1465. doi: 10.13801/j.cnki.fhclxb.20191016.001
    [16] 黄慧玲, 张隐, 甘露, 潘明珠.  Ag-ZnO/生物质炭纳米复合材料的制备及协同可见光催化性能, 复合材料学报. 2020, 37(5): 1148-1155. doi: 10.13801/j.cnki.fhclxb.20190801.001
    [17] 谢远江, 罗明洪, 夏克坚.  功能化石墨烯多层膜载金催化剂的制备及其对肼的电催化氧化, 复合材料学报. 2020, 37(7): 1695-1702. doi: 10.13801/j.cnki.fhclxb.20191209.001
    [18] 张淑娟, 杨婕妤, 张翊青, 万正睿, 周立群, 王念贵.  Pd-Sn-Co纳米粒子修饰还原氧化石墨烯/CuBi2O4复合材料的制备及电催化性能, 复合材料学报. 2020, 37(6): 1442-1449. doi: 10.13801/j.cnki.fhclxb.20191219.003
    [19] 胡海霞, 傅雅琴.  N掺杂C包覆NaTaO3复合材料制备及其可见光催化性能, 复合材料学报. 2020, 37(6): 1251-1259. doi: 10.13801/j.cnki.fhclxb.20191204.001
    [20] 胡金娟, 马春雨, 王佳琳, 王宁, 秦福文, 张庆瑜.  Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能, 复合材料学报. 2020, 37(6): 1401-1410. doi: 10.13801/j.cnki.fhclxb.20191217.001
  • 加载中
计量
  • 文章访问数:  158
  • HTML全文浏览量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-23
  • 录用日期:  2020-02-27

目录

    /

    返回文章
    返回