留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料

辛国祥 王蒙蒙 翟耀 王艳辉 张邦文 宋金玲 刘晓旭

辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2020, 37(0): 1-11
引用本文: 辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2020, 37(0): 1-11
辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2020, 37(0): 1-11
Citation: 辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2020, 37(0): 1-11

一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料

基金项目: 国家自然科学基金(51902085);内蒙古自然科学基金(2017BS0508;2019MS02023);河北省自然科学基金(E2019407123);包头市青年创新人才项目
详细信息
    通讯作者:

    辛国祥,博士,讲师,硕士生导师,研究方向为新能源材料 E-mail:xinguoxiang0924@163.com

  • 中图分类号: TB332

One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability

  • 摘要: 研究采用一步电化学剥离和电沉积法,在含Na2SO4、HCl与苯胺单体的混合溶液中,以柔性石墨纸为原料,利用电场条件下电解液离子定向迁移和苯胺单体的电聚合制备聚苯胺纳米线/自支撑石墨烯(PANI/SGr)复合材料。更具活性的新生SGr与PANI结合,显著提高了PANI/SGr复合材料的稳定性。PANI呈纳米线状均匀分布在SGr上,形成的三维网络结构所呈现出的孔隙促进了电解液离子扩散到复合材料的内部结构中。将PANI/SGr复合材料作为超级电容器电极材料进行电化学测试,2 mV·s−1的扫速下获得的比电容为453 F·g−1。在0.5~10 A·g−1的电流密度范围内,PANI/SGr复合材料倍率性能达73.1%。在1 A·g−1的电流密度下PANI/SGr复合材料经10000次充放电之后的循环稳定性仍高达87.3%。这表明PANI/SGr复合材料具有良好的电容性能和优异的循环稳定性,有望作为超级电容器电极材料。
  • 图  1  一步法制备聚苯胺纳米线/自支撑石墨烯(PANI/SGr)复合材料制备过程示意图

    Figure  1.  Schematic of fabrication process of polyaniline nanowire/self-supported graphene(PANI/SGr) composite by one-step method

    图  2  电流-时间曲线

    Figure  2.  Curve of current vs. time

    图  3  PANI/SGr复合材料的数码照片

    Figure  3.  Digital photograph of PANI/SGr composite

    图  4  SGr、PANI和PANI/SGr的热重曲线

    Figure  4.  Thermogravimetry curves of SGr, PANI and PANI/SGr

    图  5  PANI/SGr复合材料和PANI的红外光谱图

    Figure  5.  FTIR spectra of PANI/SGr composite and PANI

    图  6  PANI/GP的低倍(a)、高倍(b)FESEM图像,PANI/SGr的低倍(c) (插图为PANI/SGr的能谱图)、高倍(d)FESEM图像和PANI/SGr的低倍(e)、高倍(f)TEM图像

    Figure  6.  FESEM images of low-magnification(a) and high-magnification(b) of PANI/GP, FESEM images of low-magnification(c) and high-magnification(d) of PANI/SGr, TEM images of low-magnification(e) and high-magnification(f) of PANI/SGr(Inset of (c) shows the corresponding elemental mappings of PANI/SGr)

    图  7  PANI/GP和PANI/SGr复合材料的N2吸附-脱附等温线(a)和孔径分布曲线(b)

    Figure  7.  Nitrogen adsorption-desorption isotherms(a) and pore size distribution curves(b) of PANI/GP and PANI/SGr composites

    图  8  PANI/SGr复合材料的XPS全谱图(a)和C 1s(b)、N 1s(b)和O 1s(c)分峰图

    Figure  8.  XPS spectra and fitting peaks of PANI/SGr composite((a) survey spectrum; (b) C 1s; (c) N 1s; (d) O 1s)

    图  9  GP、SGr、PANI/GP和PANI/SGr在2 mV·s−1的CV曲线(a)和0.5 A·g−1的GCD曲线(b)、PANI/SGr在0.5~10 A·g−1的GCD曲线(c)以及SGr、PANI/GP和PANI/SGr在0.5~10 A·g−1的倍率性能(d)

    Figure  9.  CV curves at scan rate of 2 mV·s−1(a) and GCD profiles at current density of 0.5 A·g−1(b) of GP, SGr, PANI/GP and PANI/SGr, GCD profiles of PANI/SGr at current densities of 0.5~10 A·g−1(c) and rate capability of SGr, PANI/GP and PANI/SGr at current densities of 0.5~10 A·g−1(d)

    图  10  GP、SGr、PANI/GP和PANI/SGr的EIS谱(插图为高频区的放大图)(a)、PANI/GP和PANI/SGr的等效电路图(b)

    Figure  10.  EIS spectra of GP, SGr, PANI/GP and PANI/SGr(Inset shows magnified high frequency regions) (a), electrical equivalent circuit of PANI/GP and PANI/SGr(b)

    图  11  SGr、PANI/GP和PANI/SGr在1 A·g-1电流密度下经10000圈的循环稳定性

    Figure  11.  Stabilities of SGr, PANI/GP and PANI/SGr from 1 to 10000 cycles at current density of 1 A·g-1

  • [1] 赵文誉, 王振祥, 郑玉婴, 等. NiS2/三维多孔石墨烯复合材料作为超级电容器电极材料的电化学性能[J]. 复合材料学报, 2020, 37(2):422-431.

    ZHAO Wenyu, WANG Zhenxiang, ZHENG Yuying, et al. Electrochemical performance of NiS2/3D porous reduce graphene oxide composite as electrode material for supercapacitors[J]. Acta Materiae Compositae Sinica,2020,37(2):422-431(in Chinese).
    [2] MASIKHWA T M, MADITO M J, BELLO A, et al. High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite[J]. Journal of Colloid and Interface Science,2017,488:155-165. doi:  10.1016/j.jcis.2016.10.095
    [3] 梁旭, 贾宇峰, 刘宗怀, 等. 增强电容性能的高度可压缩的碳海绵上生长氧化铁纳米片[J]. 物理化学学报, 2020, 3(2):1903034. doi:  10.3866/PKU.WHXB201903034

    LIANG Xu, JIA Yufeng, LIU Zonghuai, et al. Growing iron oxide nanosheets on highly compressible carbon sponge for enhanced capacitive performance[J]. Acta Physico-Chimica Sinica,2020,3(2):1903034(in Chinese). doi:  10.3866/PKU.WHXB201903034
    [4] 张长欢, 李念武, 姚胡蓉, 等. 具有三维导电网络结构的锡纳米颗粒/石墨烯纳米片复合电极材料的储镁性能研究[J]. 化学学报, 2017, 75(2):206-211. doi:  10.6023/A16100542

    ZHANG Changhuan, LI Nianwu, YAO Hurong, et al. Synthesis of Sn nanoparticles/graphene nanosheet hybrid electrode material with three-dimensional conducting network for magnesium storage[J]. Acta Chimica Sinica,2017,75(2):206-211(in Chinese). doi:  10.6023/A16100542
    [5] 关芳兰, 李昕, 张群, 等. 激光直写微型 RGO/MWCNT/CF平面柔性超级电容器的制备及性能[J]. 高等学校化学学报, 2020, 41(2):300-307. doi:  10.7503/cjcu20190480

    GUAN Fanglan, LI Xin, ZHANG Qun, et al. Fabrication and capacitance performance of laser-machined RGO/MWCNT/CF in-plane flexible micro-supercapacitor[J]. Chemical Journal of Chinese Universities,2020,41(2):300-307(in Chinese). doi:  10.7503/cjcu20190480
    [6] KUILA T, BOSE S, MISHRA A K, et al. Chemical functionalization of graphene and its applications[J]. Progress in Materials Science,2012,57(7):1061-1105. doi:  10.1016/j.pmatsci.2012.03.002
    [7] LI D, MÜLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3(2):101-105. doi:  10.1038/nnano.2007.451
    [8] LIU F, SONG S, XUE D, et al. Folded structured graphene paper for high performance electrode materials[J]. Advanced Materials,2012,24(8):1089-1094. doi:  10.1002/adma.201104691
    [9] 李学航, 俞慧涛, 王伟仁, 等. 自支撑三维功能化石墨烯/聚苯胺电极材料的制备及超级电容性能[J]. 高等学校化学学报, 2017, 38(12):2306-2312. doi:  10.7503/cjcu20170110

    LI Xuehang, YU Huitao, WANG Weiren, et al. Preparation and performance in supercapacitor of three-dimensional functionalized graphene/polyaniline freestanding electrode materials[J]. Chemical Journal of Chinese Universities,2017,38(12):2306-2312(in Chinese). doi:  10.7503/cjcu20170110
    [10] 姚舜. 聚苯胺超级电容器材料的性能研究与应用[D]. 淮南: 安徽理工大学, 2019.

    YAO Shun. Preparation of polyaniline Material and its application in supercapacitors[D], Huainan: Anhui University of Science and Technology, 2019(in Chinese).
    [11] XU Y, TAO Y, LI H, et al. Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles[J]. Nano Energy,2017,36:349-355. doi:  10.1016/j.nanoen.2017.04.054
    [12] YANG Y, XI Y, LI J, et al. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes[J]. Nanoscale Research Letters,2017,12:394. doi:  10.1186/s11671-017-2159-9
    [13] GAO S, ZHANG L, QIAO Y, et al. Electrodeposition of polyaniline on three-dimensional graphene hydrogel as a binder-free supercapacitor electrode with high power and energy densities[J]. RSC Advances,2016,6(64):58854-58861. doi:  10.1039/C6RA06263F
    [14] XIN G, WANG Y, LIU X, et al. Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor[J]. Electrochimica Acta,2015,167:254-261. doi:  10.1016/j.electacta.2015.03.181
    [15] 李大敏. 聚苯胺及其衍生物复合薄膜电致变发射率性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    LI Damin. Variable infrared emissivity properties of PANI and its derivatives composite films[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [16] 卢凤霞. 聚苯胺基复合材料的制备及其在超级电容器中的应用[D]. 厦门: 华侨大学, 2017.

    LU Fengxia. Prepararion of polyaniline based composites and their application in supercapacitors[D]. Xiamen: Huaqiao University, 2017(in Chinese).
    [17] 赵喜燕. 电聚合制备聚苯胺/金刚石复合材料及其电化学性质[D]. 秦皇岛: 燕山大学, 2010.

    ZHAO Xiyan. Electropolymerization and electrochemical properties of polyaniline/diamond composite[D]. Qinhuangdao: Yanshan University, 2010(in Chinese).
    [18] YANG C, ZHANG L, HU N, et al. Rational design of sandwiched polyaniline nanotubes /layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors[J]. Chemical Engineering Journal,2017,309:89-97. doi:  10.1016/j.cej.2016.09.115
    [19] ZHANG Q, LI Y, FENG Y, et al. Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor[J]. Electrochimica Acta,2013,90:95-100. doi:  10.1016/j.electacta.2012.11.035
    [20] CHIN S Y, ABDULLAH T K, MARIATTI M. One-step synthesis of conductive graphene/polyaniline nanocomposites using sodium dodecylbenzenesulfonate: preparation and properties[J]. Journal of Materials Science: Materials in Electronic,2017,28(24):18418-18428. doi:  10.1007/s10854-017-7788-3
    [21] 顾鹏程, 宋爽, 张塞, 等. 聚苯胺改性Mxene复合材料对U(VI)的高效富集及机理研究[J]. 化学学报, 2018, 76(9):701-708. doi:  10.6023/A18060245

    GU Pengcheng, SONG Shuang, ZHANG Sai, et al. Enrichment of U(VI) on polyaniline modified mxene composites studied by batch experiment and mechanism investigation[J]. Acta Chimica Sinica,2018,76(9):701-708(in Chinese). doi:  10.6023/A18060245
    [22] YU J, XIE F, WU Z, et al. Flexible metallic fabric supercapacitor based on graphene/polyaniline composites[J]. Electrochimica Acta,2018,259:968-974. doi:  10.1016/j.electacta.2017.11.008
    [23] GENG X, YI R, YU Z, et al. Isothermal sulfur condensation into carbon nanotube/nitrogen-doped graphene composite for high performance lithium-sulfur batteries[J]. Journal of Materials Science: Materials in Electronic,2018,29(12):10071-10081. doi:  10.1007/s10854-018-9051-y
    [24] Mello, H J N P D, Mulato M. Influnence of galvanostatic electrodeposition parameters on the structure-property relationships of polyaniline thin films and their use as potentiometric and optical pH sensors[J]. Thin Solid Films,2018,656:14-21. doi:  10.1016/j.tsf.2018.04.022
    [25] 刘奔, 张行颖, 陈韶云, 等. 一维有序聚苯胺纳米阵列的制备及电化学储能性能[J]. 高等学校化学学报, 2019, 40(3):498-507. doi:  10.7503/cjcu20180590

    LIU Ben, ZHANG Xingying, CHEN Shaoyun, et al. Preparation and electrochemical energy storage performance of one dimensional orderly polyaniline nanowires array[J]. Chemical Journal of Chinese Universities,2019,40(3):498-507(in Chinese). doi:  10.7503/cjcu20180590
    [26] 赵梁成, 李斌, 武思蕊, 等. 功能三维石墨烯-多壁碳纳米管/热塑性聚氨酯复合材料的制备及性能[J]. 复合材料学报, 2020, 37(2):242-251.

    ZHAO Liangcheng, LI Bin, WU Sirui, et al. Preparation and properties of 3D graphene-multi walled carbon nanotube/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica,2020,37(2):242-251(in Chinese).
    [27] BANDYOPADHYAY P, KUILA T, BALAMURUGAN J, et al. Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application[J]. Chemical Engineering Journal,2017,308:1174-1184. doi:  10.1016/j.cej.2016.10.015
    [28] YU H, XIN G, GE X, et al. Porous graphene-polyaniline nanoarrays composite with enhanced interface bonding and electrochemical performance[J]. Composites Science and Technology,2018,154:76-84. doi:  10.1016/j.compscitech.2017.11.010
    [29] GUAN L, PAN L, PENG T, et al. Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting[J]. Carbon,2019,152:537-544. doi:  10.1016/j.carbon.2019.06.059
    [30] 刘连梅, 赵健伟, 陈超. 聚苯胺-石墨烯/聚酰亚胺复合导电纱的制备及其超电容特性[J]. 复合材料学报, 2020, 37(4):786-793.

    LIU Lianmei, ZHAO Jianwei, CHEN Chao. Preparation and supercapacitance characteristics of polyaniline-graphene/polyimide composite conductive yarn[J]. Acta Materiae Compositae Sinica,2020,37(4):786-793(in Chinese).
    [31] MA J, TANG S, SYDE J A, et al. High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure[J]. Journal of Materials Science & Technology,2018,34(7):1103-1109.
    [32] 林有铖, 钟新仙, 黄寒星, 等. 不同磺酸掺杂聚苯胺的制备及在超级电容器中的应用[J]. 物理化学学报, 2016, 32(2):474-480. doi:  10.3866/PKU.WHXB201511104

    LIN Youcheng, ZHONG Xinxian, HUANG Hanxing, et al. Preparation and application of polyaniline doped with different sulfonic acids for supercapacitor[J]. Acta Physico-Chimica Sinica,2016,32(2):474-480(in Chinese). doi:  10.3866/PKU.WHXB201511104
    [33] ZHAO Q, CHEN J, LUO F, et al. Vertically oriented polyaniline-graphene nanocomposite based on functionalized graphene for supercapacitor electrode[J]. Journal of Applied Polymer Science,2017,134(19):44808.
    [34] GUPTA R, VADODARIYA N, MAHTO A, et al. Functionalized seaweed-derived graphene/polyaniline nanocomposite as efficient energy storage electrode[J]. Journal of Applied Electrochemistry,2018,48:37-48. doi:  10.1007/s10800-017-1120-z
    [35] 曾向东, 赵晓昱, 韦会鸽, 等. 聚苯胺-还原氧化石墨烯复合材料的比电容及超级电容性能[J]. 物理化学学报, 2017, 33(10):2035-2041. doi:  10.3866/PKU.WHXB201705182

    ZENG Xiangdong, ZHAO Xiaoyu, WEI Huige, et al. Specific capacitance and supercapacitive properties of polyaniline-reduced graphene oxide composite[J]. Acta Physico-Chimica Sinica,2017,33(10):2035-2041(in Chinese). doi:  10.3866/PKU.WHXB201705182
    [36] LING Z, WANG G, DONG Q, et al. An ionic liquid template approach to graphene-carbon xerogel composites for supercapacitors with enhanced performance[J]. Journal of Materials Chemistry A,2014,2:14329. doi:  10.1039/C4TA02223H
    [37] WANG Y, ZHU S, TSUBAKI N, et al. Highly dispersed Mo2C anchored on N, P-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction[J]. ChemCatChem,2018,10(10):2300-2304. doi:  10.1002/cctc.201800025
    [38] 渠璐平, 任彤, 王宁, 等. 硬碳材料电极首周嵌钠过程的电化学阻抗谱研究[J]. 化学学报, 2019, 77(7):634-640. doi:  10.6023/A19030103

    Qu Luping, Ren Tong, Wang Ning, et al. Electrochemical impedance spectroscopy study on the first sodium insertion process of hard carbon material electrode[J]. Acta Chimica Sinica,2019,77(7):634-640(in Chinese). doi:  10.6023/A19030103
  • [1] 刘文军, 严建龙, 周川, 李伟东, 周玉敬, 邱虹, 白华, 胡晓兰.  氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌, 复合材料学报. 2020, 37(): 1-12.
    [2] 王娟, 张法明, 商彩云, 张彬.  石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能, 复合材料学报. 2020, 37(12): 1-12.
    [3] 马玉钦, 赵亚涛, 许威, 王杰, 陈义, 李开府.  高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展, 复合材料学报. 2020, 37(10): 1-9. doi: 10.13801/j.cnki.fhclxb.20200622.003
    [4] 陈宇飞, 武耘仲, 代国庆, 李治国, 滕成君, 崔巍巍.  SiO2包覆石墨烯/双马来酰亚胺复合材料的表征及性能, 复合材料学报. 2020, 37(5): 1015-1023. doi: 10.13801/j.cnki.fhclxb.20190911.001
    [5] 白成玲, 王磊, 朱振亚, 王旭东.  氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附, 复合材料学报. 2020, 37(6): 1458-1465. doi: 10.13801/j.cnki.fhclxb.20191016.001
    [6] 丁梅杰, 张旭东, 魏智强, 黄尚攀, 姜金龙.  MnFe2O4/还原氧化石墨烯纳米复合材料的光学性能, 复合材料学报. 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002
    [7] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. 2020, 37(7): 1571-1580. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [8] 段雯雯, 王建军, 辛振祥, 王洪振.  环氧化天然橡胶改性石墨烯-炭黑/天然橡胶复合材料的制备及性能, 复合材料学报. 2020, 37(7): 1667-1674. doi: 10.13801/j.cnki.fhclxb.20191125.002
    [9] 谢远江, 罗明洪, 夏克坚.  功能化石墨烯多层膜载金催化剂的制备及其对肼的电催化氧化, 复合材料学报. 2020, 37(7): 1695-1702. doi: 10.13801/j.cnki.fhclxb.20191209.001
    [10] 杨贵荣, 王宁, 宋文明, 李亚敏, 马颖.  WC-氧化石墨烯/Ni复合熔覆层的制备及形成机制, 复合材料学报. 2020, 37(10): 1-12. doi: 10.13801/j.cnki.fhclxb.20200203.001
    [11] 周浪, 王涛.  石墨烯/功能聚合物复合材料, 复合材料学报. 2020, 37(5): 997-1014. doi: 10.13801/j.cnki.fhclxb.20190919.001
    [12] 岳红伟, 陈淑君, 卢帆, 铁伟伟, 朱聪旭.  高性能自支撑不锈钢网@MoS2锂离子电池负极材料, 复合材料学报. 2020, 37(6): 1476-1482. doi: 10.13801/j.cnki.fhclxb.20200219.002
    [13] 张鹏, 刘洋, 陈明华, 孙凤莲.  高性能自支撑CuS/SnS2锂电池负极材料, 复合材料学报. 2020, 37(): 1-8.
    [14] 石经纬, 赵娟, 刘传军, 李东升.  复合材料翼面壁板轴压稳定性, 复合材料学报. 2020, 37(6): 1321-1333. doi: 10.13801/j.cnki.fhclxb.20190917.003
    [15] 石经纬, 赵娟, 刘传军, 李东升.  复合材料翼面壁板剪切稳定性, 复合材料学报. 2020, 37(7): 1590-1600. doi: 10.13801/j.cnki.fhclxb.20191011.001
    [16] 沈海峰, 邵胜栋, 王子路, 郭正虹.  聚乙烯亚胺修饰富勒烯的制备及其对聚丙烯热氧稳定性的影响, 复合材料学报. 2020, 37(11): 1-6. doi: 10.13801/j.cnki.fhclxb.20200421.004
    [17] 赵雪静, 孙晓君, 魏金枝, 张婷, 刘欣然.  电化学法原位合成Zn/Co-ZIF及电容性能, 复合材料学报. 2020, 37(): 1-8.
    [18] 佘小红, 杜娟, 朱雯莉.  高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能, 复合材料学报. 2020, 37(): 1-8.
    [19] 王宝霞, 李大纲, 汪钟凯.  聚苯胺/(蒙脱土-纳米纤维素)三元复合电极材料的制备及电化学性能, 复合材料学报. 2020, 37(): 1-10.
    [20] 杨云强, 张佳丽, 章海霞, 侯莹.  聚3,4-乙烯二氧噻吩/纳米多孔金复合电极的制备及其在超级电容器中的应用, 复合材料学报. 2020, 37(12): 1-9.
  • 加载中
计量
  • 文章访问数:  187
  • HTML全文浏览量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 录用日期:  2020-07-22

目录

    /

    返回文章
    返回