留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验

王新玲 陈永杰 钱文文 李可 朱俊涛

王新玲, 陈永杰, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验[J]. 复合材料学报, 2020, 37(0): 1-10
引用本文: 王新玲, 陈永杰, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验[J]. 复合材料学报, 2020, 37(0): 1-10
Xinling WANG, Yongjie CHEN, Wenwen QIAN, Ke LI, Juntao ZHU. Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh[J]. Acta Materiae Compositae Sinica.
Citation: Xinling WANG, Yongjie CHEN, Wenwen QIAN, Ke LI, Juntao ZHU. Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh[J]. Acta Materiae Compositae Sinica.

高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验

基金项目: 国家自然科学基金(51879243;U1804137;51708511);河南省交通运输科技计划项目(2020J-2-7)
详细信息
    通讯作者:

    李可,博士,副教授,研究方向为新型复合材料性能及结构加固  E-mail:irwinlike@163.com

  • 中图分类号: TU528.58

Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh

  • 摘要: 为了研究高强不锈钢绞线网增强工程水泥基复合材料(Engineered cementitious composites,ECC)的受弯性能,考虑纵向高强不锈钢绞线配筋率、ECC抗压和抗拉强度等影响因素,对设计的8个高强不锈钢绞线网增强ECC试件进行四点弯曲试验。结果表明,随着纵向高强不锈钢绞线配筋率增大,其开裂荷载基本不变,峰值荷载明显增大,但峰值位移减小,即延性降低;纵向高强不锈钢绞线配筋率小于0.48%比较合理。随着ECC强度提高,高强不锈钢绞线网增强ECC受弯试件开裂和峰值荷载均增大。ECC开裂后,受拉区的钢绞线和ECC共同受拉,施加荷载达到峰值荷载的80%时,底部最大裂缝宽度仅0.08 mm;达到峰值荷载时,最大裂缝宽度不超过0.55 mm;受压区ECC的压应变达到0.01;ECC完全压碎时,跨中最大挠度达到跨度的1/15。说明本文研究的高强不锈钢绞线网增强ECC具有良好的抗裂性能和延性性能。
  • 图  1  高强不锈钢绞线网增强ECC受弯试件

    Figure  1.  HSSSWS mesh reinforced ECC bending specimen

    图  2  试验加载装置

    Figure  2.  Schematic of test loading setup

    图  3  典型ECC受拉应力-应变曲线

    Figure  3.  Typical tensile stress versus strain curve of ECC

    图  4  高强不锈钢绞线网增强ECC试件加载及破坏

    Figure  4.  Loading and failure mode of the HSSSWS mesh reinforced ECC specimens

    图  5  高强不锈钢绞线网增强ECC荷载-跨中位移曲线

    Figure  5.  Load versus mid-span displacement curves of HSSSWS mesh reinforced ECC

    图  6  高强不锈钢绞线网增强ECC试件挠度曲线

    Figure  6.  Deflection curves of HSSSWS mesh reinforced ECC specimens

    图  7  高强不锈钢绞线网增强ECC荷载-ECC拉应变曲线

    Figure  7.  Load-tensile strain curves of HSSSWS mesh reinforced ECC

    图  8  高强不锈钢绞线网增强ECC荷载-ECC压应变曲线

    Figure  8.  Load-compressive strain curves of HSSSWS mesh reinforced ECC

    图  9  高强不锈钢绞线网增强ECC荷载-最大裂缝宽度曲线

    Figure  9.  Load versus maximum crack width curves of HSSSWS mesh reinforced ECC

    图  10  高强不锈钢绞线网增强ECC荷载(强度)-纵向高强不锈钢绞线配筋率曲线

    Figure  10.  Load (strength) versus reinforcement ratio of longitudinal HSSSWSs curves of HSSSWS mesh reinforced ECC

    图  11  高强不锈钢绞线网增强ECC纵向高强不锈钢绞线配筋率-抗弯与抗裂强度比值曲线

    Figure  11.  Reinforcement ratio of longitudinal HSSSWSs versus ratio of flexural strength and crack strength curves of HSSSWS mesh reinforced ECC

    图  12  两种ECC抗压强度试件的荷载和强度柱状图

    Figure  12.  Histograms of load and strength for specimens with two kinds of compressive strengths

    表  1  高强不锈钢绞线网增强工程水泥基复合材料(ECC)受弯试件设计

    Table  1.   Design of the high-strength stainless steel wire strand(HSSSWS) mesh reinforced engineered cementitious composite(ECC) bending specimens

    Group numberb/mmld/mmd/mmnρ/%Mix proportion of ECC
    WC1 130 50 2.4 3 0. 26 Formula 1
    WC2 110 40 2.4 3 0. 31 Formula 1
    WC3 90 30 2.4 3 0. 37 Formula 1
    WC4 70 20 2.4 3 0. 48 Formula 1
    WD1 130 50 2.4 3 0. 26 Formula 2
    WD2 110 40 2.4 3 0. 31 Formula 2
    WD3 90 30 2.4 3 0. 37 Formula 2
    WD4 70 20 2.4 3 0. 48 Formula 2
    Notes: b—Specimen width; ld—Spacing of the steel strand; d—Diameter of steel strand; n—Number of steel strands; ρ—Reinforcement ratio of longitudinal HSSSWSs.
    下载: 导出CSV

    表  2  ECC配合比

    Table  2.   Mix proportions of ECC

    MaterialFormula 1/wt%Formula 2/wt %
    Cement 15.41 15.40
    Sand 4.62 4.62
    Fly ash 61.63 61.57
    Silica powder 1.23 1.23
    Water 15.41 15.40
    PVA fiber 0.77 0.77
    Water reducing agent 0.93 0.92
    Thickening agent 0 0.09
    Note: PVA—Polyvinyl alcohol.
    下载: 导出CSV

    表  3  ECC受压试验结果

    Table  3.   Compression test results of ECC

    Mix proportion of ECCAverage compressive strength/MPaUltimate compressive strainCoefficient of variation
    Formula 1 45.05 0.43% 0.0469
    Formula 2 37.02 0.43% 0.0343
    下载: 导出CSV

    表  4  ECC受拉试验结果

    Table  4.   Tensile test results of ECC

    Mix proportion of ECCFormula 1Formula 2
    Average cracking stress/MPa 2.45 2.39
    Average cracking strain/% 0.0204 0.0189
    Average tensile strength/MPa 4.23 3.46
    Average ultimate strain/% 2.79 2.97
    下载: 导出CSV

    表  5  高强不锈钢绞线网增强ECC弯曲试验结果

    Table  5.   HSSSWS mesh reinforced ECC bending test results

    Group numberρ/%Mix proportion of ECCFc/(N·mm−1)εtb/%εct/%Sc/mmFu/(N·mm−1)W/mm
    WC1 0.26 Formula 1 10.23 0.0342 0.0251 0.44 46.72 16.49
    WC2 0.31 Formula 1 10.04 0.0324 0.0238 0.37 52.83 15.81
    WC3 0.37 Formula 1 10.43 0.0393 0.0242 0.36 56.46 15.02
    WC4 0.48 Formula 1 10.42 0.0326 0.0257 0.40 58.62 14.55
    WD1 0.26 Formula 2 9.04 0.0213 0.0198 0.33 43.81 17.72
    WD2 0.31 Formula 2 9.74 0.0254 0.0209 0.37 50.00 16.27
    WD3 0.37 Formula 2 9.72 0.0214 0.0192 0.31 55.32 13.10
    WD4 0.48 Formula 2 9.77 0.0237 0.0206 0.45 57.53 14.91
    Notes: ρ—Reinforcement ratio of longitudinal HSSSWSs; Fc—Cracking load;εtb—Bottom tensile strain at cracking; εct—Top compressive strain at cracking; Sc—Mid-span displacement corresponding to cracking load; Fu—Peak load; W—Mid-span deflection corresponding to peak load.
    下载: 导出CSV
  • [1] LI V C, LEUNG C K Y. Steady-State and Multiple Cracking of Short Random Fiber Composites[J]. Journal of Engineering Mechanics,1992,118(11):2246-2264. doi:  10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [2] LI V C, WU H C. Conditions for Pseudo Strain-hardening in Fiber Reinforced Brittle Matrix Composites[J]. Journal Applied Mechanics Reviews,1992,45(8):390-398. doi:  10.1115/1.3119767
    [3] Yu Jiahuan, Chen Wei, Yu Mingxin, et al. The microstructure of self-healed PVA ECC under wet and dry cycles[J]. Materials Research,2010,13(2):225-231. doi:  10.1590/S1516-14392010000200017
    [4] 刘曙光, 郑德路, 闫长旺, 等. 聚乙烯醇纤维水泥基复合材料拉压比试验研究[J]. 土木建筑与环境工程, 2013, 35(S1):134-138.

    Liu Shuguang, Zheng Delu, Yan Changwang, et al. Experimental Study of Ratio Between Splitting Tensile Strength and Compressive Strength for PVA Fiber Cementitious Composites[J]. Journal of Civil, Architectrual & Environment Engineering,2013,35(S1):134-138(in Chinese).
    [5] Li V C. Engineered cementitious composites-tailored composites through micromechanical modeling[J]. Journal of Advanced Concrete Technology,1998,1(3):64-97.
    [6] 王新玲, 李苗浩夫, 李可. ECC圆柱体轴心受压性能试验研究[J]. 建筑科学, 2019, 35(5):59-63.

    WANG Xinling, LI Miaohaofu, LI Ke. Experimental research on the axial compression performance of ECC cylinders[J]. Building Science,2019,35(5):59-63(in Chinese).
    [7] 蔡向荣. 超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D]. 大连理工大学, 2010.

    CAI Xiangrong. The basic mechanical performance and strain hardening process theoretical analysis of ultra high toughness cementitious composites[D]. Dalian University of Technology, 2010(in Chines
    [8] 刘伟康. ECC受压和受拉性能及本构模型研究[D]. 郑州大学, 2018.

    LIU Weikang. Study on the compression and tensile properties and the constitutive model of ECC[D]. Zhengzhou University, 2018(in Chinese)
    [9] 袁方, 陈梦成. 钢筋增强ECC梁受弯性能评估[J]. 铁道建筑, 2016(7):17-21+34. doi:  10.3969/j.issn.1003-1995.2016.07.05

    YUAN Fang, CHEN Mengcheng. Evaluation on Flexural Performance of Steel Reinforced ECC (Engineered Cementitious Composite) Girder[J]. Railway Engineering,2016(7):17-21+34(in Chinese). doi:  10.3969/j.issn.1003-1995.2016.07.05
    [10] 葛文杰, 陈俊钰, 戴强, 等. 钢筋增强ECC-混凝土复合梁受弯性能试验研究[J]. 混凝土, 2017(11):35-39. doi:  10.3969/j.issn.1002-3550.2017.11.009

    GE Wenjie, CHEN Junyu, DAI Qiang, et al. Experimental study on the flexural behavior of ECC-concretecomposite beams reinforced of steel bars[J]. Concrete,2017(11):35-39(in Chinese). doi:  10.3969/j.issn.1002-3550.2017.11.009
    [11] 徐世烺, 李庆华, 李贺东. 碳纤维编织网增强超高韧性水泥基复合材料弯曲性能的试验研究[J]. 土木工程学报, 2007, 40(12):69-76. doi:  10.3321/j.issn:1000-131x.2007.12.009

    XU Shilang, LI Qinghua, LI Hedong. An experimental study on the flexural properties of carbon textile reinforced ECC[J]. China Civil Engineering Journal,2007,40(12):69-76(in Chinese). doi:  10.3321/j.issn:1000-131x.2007.12.009
    [12] 郝瀚, 水中和, 郑又瑞, 等. GFRP筋增强ECC梁的抗弯性能研究[J]. 建材世界, 2015, 36(02):35-38. doi:  10.3963/j.issn.1674-6066.2015.02.009

    HAO Han, SHUI Zhonghe, ZHENG Yourui, et al. Study on Flexural Behavior of GFRP Bars Reinforced ECC Beam[J]. The World of Building Materials,2015,36(02):35-38(in Chinese). doi:  10.3963/j.issn.1674-6066.2015.02.009
    [13] 聂建国, 王寒冰, 张天申, 等. 高强不锈钢绞线网-渗透性聚合砂浆抗弯加固的试验研究[J]. 建筑结构学报, 2005, 26(2):1-9. doi:  10.3321/j.issn:1000-6869.2005.02.001

    NIE Jianguo, WANG Hanbing, ZHANG Tianshen, et al. Experimental study on flexural behavior of RC beams strengthened with stainless steel wire mesh and permeability polymer mortar[J]. Journal of Building Structures,2005,26(2):1-9(in Chinese). doi:  10.3321/j.issn:1000-6869.2005.02.001
    [14] 聂建国, 蔡奇, 张天申, 等. 高强不锈钢绞线网-渗透性聚合砂浆抗剪加固的试验研究[J]. 建筑结构学报, 2005, 26(2):10-17. doi:  10.3321/j.issn:1000-6869.2005.02.002

    NIE Jianguo, CAI Qi, ZHANG Tianshen, et al. Experimental study on shear behavior of RC beams strengthened with stainless steel wire mesh and permeability polymer mortar[J]. Journal of Building Structures,2005,26(2):10-17(in Chinese). doi:  10.3321/j.issn:1000-6869.2005.02.002
    [15] 王亚勇, 姚秋来, 巩正光, 等. 高强钢绞线网-聚合物砂浆在郑成功纪念馆加固工程中的应用[J]. 建筑结构, 2005, 35(8):41-42.

    WANG Yayong, YAO Qiulai, GONG Zhengguang, et al. Application of strengthened technology by composite cover combined with high strength wire cable mesh and polymeric mortar in Zheng Chenggong Memorial strengthening engineering[J]. Building Structure,2005,35(8):41-42(in Chinese).
    [16] 夏晓兵, 栾福杰, 李继斌, 等. 高强不锈钢绞线网-高强渗透性聚合物砂浆加固技术在改造施工中的应用[J]. 建筑结构, 2010, 40(S):669-670.

    Xia Xiaobing, Luan Fujie, Li Jibin, et al. The application of high-strength stainless steel wire mesh and permeability polymer mortar in engineering strengthening and retrofitting[J]. Building Structures,2010,40(S):669-670(in Chinese).
    [17] 朱俊涛, 李燚, 王新玲. 考虑横向钢绞线影响的钢绞线网/工程水泥基复合材料黏结性能试验研究[J]. 工业建筑, 2018, 48(11):143-148.

    ZHU Juntao, LI Yi, WANG Xinling. Experimental research on bonding performance of stainless steel wire mesh/ECC with horizontal steel wire[J]. Industrial Construction,2018,48(11):143-148(in Chinese).
    [18] 朱俊涛, 赵亚楼, 李燚, 等. 高强不锈钢绞线网与工程水泥基复合材料粘结锚固性能试验[J]. 复合材料学报, 2020, 37.

    ZHU Juntao, ZHAO Yalou, LI Yi, et al. Experiment on bonding and anchoring performance between high-strength stainless steel wire mesh and engineered cementitious composites[J]. Acta Materiae Compositae Sinica,2020,37(in Chinese).
    [19] 王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系[J/OL]. 复合材料学报: 20200428.002.

    WANG Xinling, YANG Guanghua, QIAN Wenwen, et al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh[J/OL]. Acta Materiae Compositae Sinica, 20200428.002 (in Chinese)
    [20] 中华人民共和国住房和城乡建筑部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010-2010[S]. Beijing: China Architecture & Building Press, 2015(in Chinese)
    [21] Maalej M, Li V C. Flexural strength of fiber cementitious composites[J]. Journal of Materials in Civil Engineering, ASCE,1994,6(3):390-406. doi:  10.1061/(ASCE)0899-1561(1994)6:3(390)
  • [1] 刘可心, 王蕾, 杨晨, 金松哲.  Ti3SiC2/Cu复合材料的制备与摩擦磨损性能, 复合材料学报. 2020, 37(11): 1-9.
    [2] 刘秀玉, 张冰, 韩祥祥, 刘亚辉, 赵石旭, 唐刚.  空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能, 复合材料学报. 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
    [3] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(): 1-8. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [4] 周文英, 张财华, 李旭, 张帆, 张祥林.  基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能, 复合材料学报. 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
    [5] 汤龙其, 令旭霞, 王士华, 郭帅, 龙柱.  聚吡咯/碳纤维纸电热复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1426-1433. doi: 10.13801/j.cnki.fhclxb.20191021.002
    [6] 吴佳奇, 李刚, 杨小平, 苏清福.  耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能, 复合材料学报. 2020, 37(7): 1505-1512. doi: 10.13801/j.cnki.fhclxb.20191211.001
    [7] 刘新, 陈铎, 何辉永, 孙涛, 武湛君.  热塑性颗粒-无机粒子协同增韧碳纤维增强环氧树脂复合材料, 复合材料学报. 2020, 37(8): 1904-1910. doi: 10.13801/j.cnki.fhclxb.20191113.006
    [8] 卢英, 荀晓伟, 杨志伟, 罗红林, 万怡灶, 左桂福.  纳米羟基磷灰石及其复合材料作为药物载体的研究进展, 复合材料学报. 2020, 37(12): 1-13.
    [9] 丁颖慧, 祁国成, 张博明.  结构储电碳纤维复合材料研究进展, 复合材料学报. 2020, 37(): 1-9.
    [10] 周典瑞, 高亮, 霍红宇, 张宝艳.  热塑性树脂基复合材料用碳纤维上浆剂研究进展, 复合材料学报. 2020, 37(8): 1785-1795. doi: 10.13801/j.cnki.fhclxb.20200507.001
    [11] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. 2020, 37(12): 1-18. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [12] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1243-1250. doi: 10.13801/j.cnki.fhclxb.20191014.002
    [13] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [14] 史俊伟, 刘松平, 荀国立, 杨刚.  孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响, 复合材料学报. 2020, 37(6): 1295-1311. doi: 10.13801/j.cnki.fhclxb.20191008.001
    [15] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. 2020, 37(7): 1571-1580. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [16] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [17] 徐可, 陆春华, 宣广宇, 张灵灵, 倪铭志, 刘荣桂.  混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算, 复合材料学报. 2020, 37(9): 2348-2357. doi: 10.13801/j.cnki.fhclxb.20200212.003
    [18] 王新玲, 杨广华, 钱文文, 李可, 朱俊涛.  高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系, 复合材料学报. 2020, 37(12): 1-9.
    [19] 朱俊涛, 赵亚楼, 李燚, 王新玲.  高强不锈钢绞线网与工程水泥基复合材料黏结锚固性能试验, 复合材料学报. 2020, 37(7): 1731-1742. doi: 10.13801/j.cnki.fhclxb.20191010.001
    [20] 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证, 复合材料学报. 2010, 27(5): 108-115.
  • 加载中
计量
  • 文章访问数:  199
  • HTML全文浏览量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-07-28
  • 网络出版日期:  2020-09-29

目录

    /

    返回文章
    返回