留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高填充聚丙烯基木塑复合材料高低温性能

徐俊杰 郝笑龙 周海洋 孙理超 刘涛 王清文 欧荣贤

徐俊杰, 郝笑龙, 周海洋, 等. 超高填充聚丙烯基木塑复合材料高低温性能[J]. 复合材料学报, 2021, 38(12): 4106-4122. doi: 10.13801/j.cnki.fhclxb.20210317.002
引用本文: 徐俊杰, 郝笑龙, 周海洋, 等. 超高填充聚丙烯基木塑复合材料高低温性能[J]. 复合材料学报, 2021, 38(12): 4106-4122. doi: 10.13801/j.cnki.fhclxb.20210317.002
XU Junjie, HAO Xiaolong, ZHOU Haiyang, et al. High- and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4106-4122. doi: 10.13801/j.cnki.fhclxb.20210317.002
Citation: XU Junjie, HAO Xiaolong, ZHOU Haiyang, et al. High- and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4106-4122. doi: 10.13801/j.cnki.fhclxb.20210317.002

超高填充聚丙烯基木塑复合材料高低温性能

doi: 10.13801/j.cnki.fhclxb.20210317.002
基金项目: 国家重点研发计划课题(2019YFD1101203);国家自然科学基金(31870547;32071698;31901251);广东省重点领域研发计划项目(2020B0202010008);广州市创新平台建设计划项目(201905010005);广州市“林业工程”重点学科项目
详细信息
    通讯作者:

    欧荣贤,博士,副教授,硕士生导师,研究方向为生物质复合材料、木材改性功能化 E-mail:rongxian_ou@scau.edu.cn

  • 中图分类号: TB332

High- and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite

  • 摘要: 为了充分降低成本,增加环境友好性并获得良好的木质感,以杨木纤维和毛竹纤维为原料,通过挤出成型制备超高填充聚丙烯基木塑复合材料(UH-WPCs)。基于聚丙烯基体含量的大幅降低,对比分析了填充量和木质纤维种类对UH-WPCs高低温力学性能、高低温蠕变性能、热膨胀性能、尺寸稳定性及吸水性能的影响。结果表明,随着填充量从75wt%增加到90wt%,其线性热膨胀系数大幅降低,蠕变应变逐渐减小而在90wt%时增大;拉伸模量和弯曲模量随填充量的增加先升高而后在90wt%时下降;拉伸强度、弯曲强度和冲击强度随着填充量的增加逐渐降低;在低温−30℃时UH-WPCs的拉伸和弯曲性能较高,高温60℃时冲击韧性较好。温度、湿度及含水率变化均导致UH-WPCs尺寸变化,其中厚度方向尺寸变化率最大,其次为宽度方向,长度方向最小,表现出明显的各向异性;湿度对UH-WPCs的尺寸稳定性的影响远大于温度的作用。杨木基UH-WPCs综合性能优于毛竹基UH-WPCs,这与杨木纤维具有更大的长径比及良好的界面结合有关。UH-WPCs的研究为降低WPCs生产成本和拓宽其应用领域提供了理论依据。

     

  • 图  1  杨木纤维和毛竹纤维的粒径分布

    Figure  1.  Particle size distribution of poplar wood fiber and bamboo fiber

    图  2  木质纤维体视显微图像

    Figure  2.  Stereo microscope images of wood fiber((a) Poplar wood fiber; (b) Bamboo fiber)

    图  3  UH-WPCs的剖面密度分布(VDP)曲线

    Figure  3.  Vertical density profile (VDP) curves of UH-WPCs

    图  4  UH-WPCs高低温拉伸性能

    Figure  4.  High- and low-temperature tensile properties of UH-WPCs

    图  5  UH-WPCs高低温弯曲性能

    Figure  5.  High- and low-temperature flexural properties of UH-WPCs

    图  6  UH-WPCs高低温缺口冲击强度

    Figure  6.  High- and low-temperature notched impact strength of UH-WPCs

    图  7  不同填充量下杨木基UH-WPCs微观形貌

    Figure  7.  Micromorphologies of UH-WPCs prepared with wood fiber with different filling contents((a) 75wt%(WF-TP)/PP-MAPP; (b) 80wt%(WF-TP)/PP-MAPP; (c) 85wt%(WF-TP)/PP-MAPP; (d) 90wt%(WF-TP)/PP-MAPP)

    图  8  不同填充量下毛竹基UH-WPCs的微观形貌

    Figure  8.  Micromorphologies of UH-WPCs prepared with bamboo fiber with different filling contents((a) 75wt%(BF-TP)/PP-MAPP; (b) 80wt%(BF-TP)/PP-MAPP; (c) 85wt%(BF-TP)/PP-MAPP; (d) 90wt%(BF-TP)/PP-MAPP)

    图  9  UH-WPCs高低温蠕变

    Figure  9.  High- and low-temperature creep of UH-WPCs

    图  10  UH-WPCs及PP的线性热膨胀系数

    Figure  10.  Linear coefficient of thermal expansion of UH-WPCs and PP((a) Length direction; (b) Width direction; (c) Thickness direction)

    图  11  UH-WPCs在80℃条件下的尺寸收缩率

    Figure  11.  Shrinking rate of UH-WPCs at 80℃

    图  12  UH-WPCs在80℃条件下的质量损失率

    Figure  12.  Mass loss rate of UH-WPCs at 80℃

    图  13  UH-WPCs的吸水率

    Figure  13.  Water uptake of UH-WPCs

    图  14  UH-WPCs的吸水膨胀率

    Figure  14.  Water uptake swelling of UH-WPCs

    表  1  超高填充聚丙烯基木塑复合材料(UH-WPCs)各组分配比

    Table  1.   Formulations of the ultra-highly filled polypropylene-based wood plastic composites (UH-WPCs)

    SampleWood fiber/wt%Bamboo fiber/wt%Talcum powder/wt%PP/wt%MAPP/wt%Lubricant/wt%
    75wt%(WF-TP)/PP-MAPP 70 5 20 3 2
    80wt%(WF-TP)/PP-MAPP 75 5 15 3 2
    85wt%(WF-TP)/PP-MAPP 80 5 10 3 2
    90wt%(WF-TP)/PP-MAPP 85 5 5 3 2
    75wt%(BF-TP)/PP-MAPP 70 5 20 3 2
    80wt%(BF-TP)/PP-MAPP 75 5 15 3 2
    85wt%(BF-TP)/PP-MAPP 80 5 10 3 2
    90wt%(BF-TP)/PP-MAPP 85 5 5 3 2
    Notes: WF, BF and TP—Poplar wood fiber, bamboo fiber, talcum powder, respectively; PP—Polypropylene; MAPP—Maleic anhydride grafted polypropylene.
    下载: 导出CSV

    表  2  木质纤维的几何尺寸

    Table  2.   Geometric size of the wood fibers

    SampleD[4,3]/μmD[3,2]/μmSSA/(m2·L−1)Number of particleLength/μmDiameter/μmL/D
    Wood fiber 405.67 163.17 36.77 332 329.38±188.92 94.72±65.03 3.93±2.25
    Bamboo fiber 287.79 157.84 38.01 393 240.22±216.93 88.27±53.66 3.07±2.52
    Notes: D[4,3], D[3,2], SSA—Volume average diameter, area average diameter, specific surface area, respectively, represent the average value of the three tests of the laser particle size analyzer; Number of particle and L/D—Average value obtained from the analysis and processing of the stereo microscope photos.
    下载: 导出CSV

    表  3  UH-WPCs的密度和孔隙率

    Table  3.   Density and porosity of UH-WPCs

    SampleAverage density/(kg·m−3)Central density/(kg·m−3)Porosity/%
    75wt%(WF-TP)/PP-MAPP 1230.0 1239.9 7.95
    80wt%(WF-TP)/ PP-MAPP 1290.3 1295.8 5.93
    85wt%(WF-TP)/ PP-MAPP 1322.3 1352.8 6.15
    90wt%(WF-TP)/ PP-MAPP 1337.9 1270.5 7.62
    75wt%(BF-TP)/ PP-MAPP 1214.2 1224.8 9.14
    80wt%(BF-TP)/ PP-MAPP 1250.9 1261.3 8.80
    85wt%(BF-TP)/ PP-MAPP 1267.5 1257.0 10.04
    90wt%(BF-TP)/ PP-MAPP 1244.3 1062.8 14.09
    Note: Porosity was calculated based on the densities of the ingredients: 1.5 g cm−3 for fiber cell wall, 2.7 g cm−3 for talc, and 0.95 g cm−3 for PP, MAPP and PA03, respectively.
    下载: 导出CSV

    表  4  UH-WPCs的扩散系数

    Table  4.   Diffusion coefficient of UH-WPCs

    Filling content/wt%Diffusion coefficient/(10−13 m2·s−1)
    0-10/day10-20/day
    (WF-TP)/PP-MAPP(BF-TP)/PP-MAPP(WF-TP)/PP-MAPP(BF-TP)/PP-MAPP
    75 13.68 14.09 17.16 15.06
    80 20.37 19.96 6.77 9.39
    85 28.18 25.84 1.14 3.47
    90 30.66 33.94 0.93 0.88
    下载: 导出CSV
  • [1] MOHANTY A K, VIVEKANANDHAN S, PIN J, et al. Compo-sites from renewable and sustainable resources: Challenges and innovations[J]. Science,2018,362:536-542. doi: 10.1126/science.aat9072
    [2] GURUNATHAN T, MOHANTY S, NAYAK S K. A review of the recent developments in bio-composites based on na-tural fibres and their application perspectives[J]. Compo-sites Part A: Applied Science and Manufacturing,2015,77:1-25. doi: 10.1016/j.compositesa.2015.06.007
    [3] BALLA V K, KATE K H, SATYAVOLU J, et al. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects[J]. Composites Part B: Engineering,2019,174:106956. doi: 10.1016/j.compositesb.2019.106956
    [4] 王清文, 易欣, 沈静. 木塑复合材料在家具制造领域的发展机遇[J]. 林业工程学报, 2016, 1(3):1-8.

    WANG Qingwen, YI Xing, SHEN Jing. Tailoring wood-plastic composites for furniture production: possibilities and opportunities[J]. China Forestry Science and Technology,2016,1(3):1-8(in Chinese).
    [5] 王伟宏, 李春桃, 王清文. 木塑复合材料产业化现状及制造关键技术[J]. 现代化工, 2010(1):6-10.

    WANG Weihong, LI Chuntao, WANG Qingwen. Industrial development status and key technolo-gies of wood plastics composites[J]. Modern Chemical Industry,2010(1):6-10(in Chinese).
    [6] CHAUDEMANCHE S, PERROT A, PIMBERT S, et al. Properties of an industrial extruded HDPE-WPC: The effect of the size distribution of wood flour particles[J]. Construction and Building Materials,2018,162:543-552. doi: 10.1016/j.conbuildmat.2017.12.061
    [7] 王伟宏, 卢国军. 硅烷偶联剂处理玄武岩纤维增强木塑复合材料[J]. 复合材料学报, 2013, 30(S1):315-320.

    WANG Weihong, LU Guojun. The silane cou pling agent treatment of basalt fibers reinforced wood-plastic compo-site[J]. Acta Materiae Compositae Sinica,2013,30(S1):315-320(in Chinese).
    [8] LI T Q, WOLCOTT M P. Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple[J]. Polymer Engineering & Science,2005,45(4):549-559.
    [9] 张娟, 宁莉萍, 杨红军, 等. 玻璃纤维含量对竹粉/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2016, 33(3):477-485.

    ZHANG Juan, NING Liping, YANG Hongjun, et al. Effects of glass fiber content on properties of bamboo flour/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2016,33(3):477-485(in Chinese).
    [10] FRIEDRICH D, LUIBLE A. Investigations on ageing of wood-plastic composites for outdoor applications: A meta-analysis using empiric data derived from diverse weathering trials[J]. Construction and Building Materials,2016,124:1142-1152. doi: 10.1016/j.conbuildmat.2016.08.123
    [11] HAO X, ZHOU H, XIE Y, et al. Sandwich-structured wood flour/HDPE composite panels: Reinforcement using a linear low-density polyethylene core layer[J]. Construction and Building Materials,2018,164:489-496. doi: 10.1016/j.conbuildmat.2017.12.246
    [12] GUAN Q, YANG H, HAN Z, et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient[J]. Science Advances,2020,6(18):z1114. doi: 10.1126/sciadv.aaz1114
    [13] ITO H, HATTORI H, OKAMOTO T, et al. Thermal expansion of high filler content cellulose-plastic composites[J]. Journal of Wood Chemistry and Technology,2010,30(4):360-372. doi: 10.1080/02773810903537119
    [14] GACITUA W, BAHR D, WOLCOTT M. Damage of the cell wall during extrusion and injection molding of wood plastic composites[J]. Composites Part A: Applied Science and Manufacturing,2010,41(10):1454-1460. doi: 10.1016/j.compositesa.2010.06.007
    [15] KUO P, WANG S, CHEN J, et al. Effects of material compo-sitions on the mechanical properties of wood-plastic compo-sites manufactured by injection molding[J]. Materials & Design,2009,30(9):3489-3496.
    [16] BENTHIEN J T, THOEMEN H. Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels[J]. Composites Part A: Applied Science and Manufacturing,2012,43(4):570-576. doi: 10.1016/j.compositesa.2011.12.028
    [17] HAO X, ZHOU H, MU B, et al. Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of na-tural fiber/HDPE composites[J]. Composites Part B: Engineering,2020,185:107778. doi: 10.1016/j.compositesb.2020.107778
    [18] OU R, XIE Y, WOLCOTT M P, et al. Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites[J]. Composites Science and Technology,2014,93:68-75. doi: 10.1016/j.compscitech.2014.01.001
    [19] OU R, XIE Y, WANG Q, et al. Effects of ionic liquid on the rheological properties of wood flour/high density polyethylene composites[J]. Composites Part A: Applied Science and Manu-facturing,2014,61:134-140. doi: 10.1016/j.compositesa.2014.02.017
    [20] 宋永明, 王清文. 木塑复合材料流变行为研究进展[J]. 林业科学, 2012, 48(8):143-149.

    SONG Yongming, WANG Qingwen. Research progress on rheological behavior of wood-plastic composites[J]. Scientia Silvae Sinicae,2012,48(8):143-149(in Chinese).
    [21] HRISTOV V, TAKÁCS E, VLACHOPOULOS J. Surface tearing and wall slip phenomena in extrusion of highly filled HDPE/wood flour composites[J]. Polymer Engineering and Science,2006,46(9):1204-1214. doi: 10.1002/pen.20592
    [22] GUAN Q, HAN Z, YANG H, et al. Regenerated isotropic wood[J]. National Science Review,2021,8(7):9.
    [23] WANG Q, OU R, SHEN X, et al. Plasticizing cell walls as a strategy to produce wood-plastic composites with high wood content by extrusion processes[J]. Bioresources,2011,6(4):3621-3622.
    [24] ASTM. Standard test method for tensile properties of plastics: ASTM D638[S]. West conshohocken: ASTM, 2014.
    [25] ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790[S]. West conshohocken: ASTM, 2017.
    [26] ASTM. Standard test methods for determining the izod pendulum impact resistance of plastics: ASTM D256[S]. West conshohocken: ASTM, 2018.
    [27] ASTM. Standard test method for coefficient of linear thermal expansion of plastics between −30°C and 30°C with a vitreous silica dilatometer: ASTM D696[S]. West conshohocken: ASTM, 2016.
    [28] ASTM. Standard test method for water absorption of plastics: ASTM D570[S]. West conshohocken: ASTM, 2018.
    [29] HOSSEINAEI O, WANG S, ENAYATI A A, et al. Effects of hemicellulose extraction on properties of wood flour and wood-plastic composites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(4):686-694. doi: 10.1016/j.compositesa.2012.01.007
    [30] ADHIKARY K B, PANG S, STAIGER M P. Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust[J]. Chemical Engineering Journal,2008,142(2):190-198. doi: 10.1016/j.cej.2007.11.024
    [31] QI C, YADAMA V, GUO K, et al. Preparation and properties of oriented sorghum-thermoplastic composites using flat hot-pressing technology[J]. Journal of Reinforced Plastics and Composites,2015,34(15):1241-1252. doi: 10.1177/0731684415591066
    [32] 杜复元, 张建顺, 林文青. 竹材密度的研究[J]. 竹子研究汇刊, 1992, 11(1):50-58.

    DU Fuyuan, ZHANG Jianshun, LIN Wenqing. A study on bamboo density[J]. Journal of Bamboo Research,1992,11(1):50-58(in Chinese).
    [33] BENIN S R, KANNAN S, BRIGHT R J, et al. A review on mechanical characterization of polymer matrix compo-sites & its effects reinforced with various natural fibres[J]. Materials Today: Proceedings,2020,33:798-805.
    [34] JIA Z, LI T, CHIANG F, et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology,2018,154:53-63. doi: 10.1016/j.compscitech.2017.11.015
    [35] MENG J, WANG Y, YANG H, et al. Mechanical properties and internal microdefects evolution of carbon fiber reinforced polymer composites: Cryogenic temperature and thermocycling effects[J]. Composites Science and Technology,2020,191:108083. doi: 10.1016/j.compscitech.2020.108083
    [36] 刘康, 汪荣顺, 石玉美, 等. 纤维增强聚合物基复合材料的低温性能[J]. 低温工程, 2006(5):35-44. doi: 10.3969/j.issn.1000-6516.2006.05.007

    LIU Kang, WANG Rongshun, SHE Meiyu, et al. Cryogenic performances of fibre reinforced polymer matrix compo-sites[J]. Cryogenics,2006(5):35-44(in Chinese). doi: 10.3969/j.issn.1000-6516.2006.05.007
    [37] BALASURIYA P W, YE L, MAI Y W. Mechanical properties of wood flake-polyethylene composites. Part I: Effects of processing methods and matrix melt flow behaviour[J]. Composites Part A: Applied Science and Manufacturing,2001,32:619-629. doi: 10.1016/S1359-835X(00)00160-3
    [38] OU R, ZHAO H, SUI S, et al. Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylen composites[J]. Composites Part A: Applied Science and Manufacturing,2010,41(9):1272-1278. doi: 10.1016/j.compositesa.2010.05.011
    [39] 周贤武. C3H和HCT下调转基因杨树木材细胞壁结构与性能研究[D]. 北京: 中国林业科学研究院, 2018.

    ZHOU Xianwu. Study on cell wall structure and properties of down regulated C3H and HCT transgenic poplar[D]. Beijing: Chinese Academy of Forestry, 2018(in Chinese).
    [40] 孙宏雨, 吕兴聪, 郭垂根, 等. 杨木纤维/聚乙烯复合材料拉伸性能微观力学模型[J]. 复合材料学报, 2021, 38(1):155-164.

    SUN Hongyu, LV Xingcong, GUO Chuigen, et al. Micromechanical model of tensile properties of poplar fiber/polyethylene composite[J]. Acta Materiae Compositae Sinica,2021,38(1):155-164(in Chinese).
    [41] JULSON J L, SUBBARAO G, STOKKE D D, et al. Mechanical properties of biorenewable fiber/plastic composites[J]. Journal of Applied Polymer Science,2004,93(5):2484-2493. doi: 10.1002/app.20823
    [42] HONG H, LIAO H, ZHANG H, et al. Significant im provement in performance of recycled polyethylene/wood flour composites by synergistic compatibilization at multi-scale interfaces[J]. Composites Part A: Applied Science and Manu-facturing,2014,64:90-98. doi: 10.1016/j.compositesa.2014.04.022
    [43] MU B, WANG H, HAO X, et al. Morphology, mechanical properties and dimensional stability of biomass particles/high density polyethylene composites: Effect of species and composition[J]. Polymers,2018,10(3):308. doi: 10.3390/polym10030308
    [44] GEORGIOPOULOS P, KONTOU E, et al. Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers[J]. Composites Part B: Engineering,2015,80:134-144. doi: 10.1016/j.compositesb.2015.05.046
    [45] HAO X, YI X, SUN L, et al. Mechanical properties, creep resistance, and dimensional stability of core/shell structured wood flour/polyethylene composites with highly filled core layer[J]. Con-struction and Building Materials,2019,226:879-887. doi: 10.1016/j.conbuildmat.2019.07.329
    [46] SUN L, ZHOU H, ZONG G, et al. Effects of SiO2 filler in the shell and wood fiber in the core on the thermal expansion of core-shell wood/polyethylene composites[J]. Polymers,2020,12(11):2570. doi: 10.3390/polym12112570
    [47] REN L, PASHAYI K, FARD H R, et al. Engineering the coefficient of thermal expansion and thermal conductivity of polymers filled with high aspect ratio silica nanofibers[J]. Composites Part B: Engineering,2014,58:228-234. doi: 10.1016/j.compositesb.2013.10.049
    [48] DHAKAL H, ZHANG Z, RICHARDSON M. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites[J]. Compo-sites Science and Technology,2007,67(7-8):1674-1683. doi: 10.1016/j.compscitech.2006.06.019
    [49] MACHADO J S, SANTOS S, PINHO F F S, et al. Impact of high moisture conditions on the serviceability perfor-mance of wood plastic composite decks[J]. Materials & Design,2016,103:122-131.
    [50] FAURE F, PERROT A, PIMBERT S, et al. Water absorption measurements on WPCs: Assessment of size and direction dependencies in order to design fast and accurate quality control tests[J]. Polymer Testing,2019,77:105899. doi: 10.1016/j.polymertesting.2019.105899
    [51] CHEN R S, AHMAD S, GAN S. Rice husk bio-filler reinforced polymer blends of recycled HDPE/PET: Three-dimensional stability under water immersion and mechanical performance[J]. Polymer Composites,2018,39(8):2695-2704. doi: 10.1002/pc.24260
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  971
  • HTML全文浏览量:  517
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 录用日期:  2021-03-07
  • 网络出版日期:  2021-03-18
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回