留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅化镁还原CO2一步原位合成Si/C复合负极

石永刚 张志勇 陈彬 宋文龙 梁初 黄辉

石永刚, 张志勇, 陈彬, 等. 硅化镁还原CO2一步原位合成Si/C复合负极[J]. 复合材料学报, 2021, 38(10): 3522-3528. doi: 10.13801/j.cnki.fhclxb.20210215.001
引用本文: 石永刚, 张志勇, 陈彬, 等. 硅化镁还原CO2一步原位合成Si/C复合负极[J]. 复合材料学报, 2021, 38(10): 3522-3528. doi: 10.13801/j.cnki.fhclxb.20210215.001
SHI Yonggang, ZHANG Zhiyong, CHEN Bin, et al. In-situ synthesis of Si/C composites anode by one-step reduction of CO2 with magnesium silicide[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3522-3528. doi: 10.13801/j.cnki.fhclxb.20210215.001
Citation: SHI Yonggang, ZHANG Zhiyong, CHEN Bin, et al. In-situ synthesis of Si/C composites anode by one-step reduction of CO2 with magnesium silicide[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3522-3528. doi: 10.13801/j.cnki.fhclxb.20210215.001

硅化镁还原CO2一步原位合成Si/C复合负极

doi: 10.13801/j.cnki.fhclxb.20210215.001
基金项目: 国家自然科学基金(51677170);浙江省自然科学基金(LY18B030008)
详细信息
    通讯作者:

    黄辉,博士,博士生导师,研究方向为新能源材料和CO2转化技术  E-mail:hhui@zjut.edu.cn

  • 中图分类号: TB332;TM912

In-situ synthesis of Si/C composites anode by one-step reduction of CO2 with magnesium silicide

  • 摘要: 硅碳(Si/C)负极被认为是高能量密度锂离子电池的首选负极材料,本文提出了一种利用Mg2Si一步还原CO2原位制备硅碳复合材料的新方法,研究了Ar∶CO2混合气体积比和反应温度等关键工艺对Si/C负极材料微结构和电化学性能的影响。研究发现,该方法原位合成的Si/C颗粒尺寸为几百纳米,晶态硅和无定形碳相互交织、分布均匀。当反应温度为700℃、Ar∶CO2=7∶1时合成的Si/C复合材料作为锂离子电池负极材料时,在0.2 A/g的电流密度下,500个循环后仍有1134 mA·h/g可逆容量。本文利用温室气体CO2来制备储能用Si/C复合负极材料,既能实现变废为宝,同时该方法合成工艺简便,容易工业化实施,具有商业化开发的潜力。

     

  • 图  1  CO2与Mg2Si在不同反应条件下合成Si/C复合材料的酸洗前后的XRD图谱((a)、(b)Ar∶CO2不同体积比; (c)、(d)不同反应温度)

    Figure  1.  XRD patterns of Si/C composites synthesized from reaction of CO2 and Mg2Si under different conditions before and after acid ((a), (b) Different volume ratios of Ar∶CO2 ; (c), (d) Different reaction temperatures)

    图  2  Si/C复合材料的酸处理后的热重分析曲线

    Figure  2.  TGA curves of Si/C composites after acid

    图  3  Si/C复合材料的SEM图像 ((a)~(f));700℃、Ar∶CO2=7∶1下合成的Si/C产物TEM、HRTEM、STEM图像及EDS能谱 ((g)~(i))

    Figure  3.  SEM images of Si/C composites ((a)-(f)); TEM, HRTEM, STEM images and EDS of Si/C composites synthetized at 700℃, Ar∶CO2=7∶1 ((g)-(i))

    图  4  不同条件下合成的Si/C复合材料的电化学性能

    Figure  4.  Electrochemical performance of Si/C composites synthetized at different conditions

  • [1] CHEN Q, ZHU R, LIU S, et al. Self-templating synthesis of silicon nanorods from natural sepiolite for high-perfor-mance lithium-ion battery anodes[J]. Journal of Materials Chemistry A,2018,6(15):6356-6362. doi: 10.1039/C8TA00587G
    [2] WANG M S, WANG G L, WANG S, et al. In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries[J]. Chemical Engineering Journal,2019,356:895-903. doi: 10.1016/j.cej.2018.09.110
    [3] 岳红伟, 陈淑君, 卢帆, 等. 高性能自支撑不锈钢网@MoS2锂离子电池负极材料[J]. 复合材料学报, 2020, 37(6):1476-1482.

    YUE Hongwei, CHEN Shujun, LU Fan, et al. High perfor-mance freestanding stainless steel net@MoS2 lithium-ion battery anode material[J]. Acta Materiae Compositae Sinica,2020,37(6):1476-1482(in Chinese).
    [4] ZHAO H, YUAN W, LIU G. Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries[J]. Nano Today,2015,10(2):193-212. doi: 10.1016/j.nantod.2015.02.009
    [5] ENTWISTLE J, RENNIE A, PATWARDHAN S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond[J]. Journal of Materials Chemistry A,2018,6(38):18344-18356. doi: 10.1039/C8TA06370B
    [6] 李振杰, 钟杜, 张洁, 等. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1):201-209.

    LI Zhenjie, ZHONG Du, ZHANG Jie, et al. Silicon nanoparticles/carbon composites for lithium-ion battery[J]. Progressin Chemistry,2019,31(1):201-209(in Chinese).
    [7] ZUO X, ZHU J, MüLLER-BUSCHBAUM P, et al. Silicon based lithium-ion battery anodes: A chronicle perspective review[J]. Nano Energy,2017,31:113-143. doi: 10.1016/j.nanoen.2016.11.013
    [8] COOK J B, KIM H S, LIN T C, et al. Tuning porosity and surface area in mesoporous silicon for application in Li-ion battery electrodes[J]. ACS Applied Materials & Interfaces,2017,9(22):19063-19073.
    [9] ZHANG L, LIU X, ZHAO Q, et al. Si-containing precursors for Si-based anode materials of Li-ion batteries: A review[J]. Energy Storage Materials,2016,4:92-102. doi: 10.1016/j.ensm.2016.01.011
    [10] JANG J, KANG I, YI K W, et al. Highly conducting fibrous carbon-coated silicon alloy anode for lithium ion batteries[J]. Applied Surface Science,2018,454:277-283. doi: 10.1016/j.apsusc.2018.05.165
    [11] SOHN H, KIM D H, YI R, et al. Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries[J]. Journal of Power Sources,2016,334:128-136. doi: 10.1016/j.jpowsour.2016.09.096
    [12] YANG W, YING H, ZHANG S, et al. Electrochemical performance enhancement of porous Si lithium-ion battery anode by integrating with optimized carbonaceous materials[J]. Electrochimica Acta,2020,337:135687. doi: 10.1016/j.electacta.2020.135687
    [13] LUO W, SHEN D, ZHANG R, et al. Germanium nanograin decoration on carbon shell: Boosting lithium-storage properties of silicon nanoparticles[J]. Advanced Functional Materials,2016,26(43):7800-7806. doi: 10.1002/adfm.201603335
    [14] LIU S, XU W, DING C, et al. Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon[J]. Applied Surface Science,2019,494:94-100. doi: 10.1016/j.apsusc.2019.07.193
    [15] DING X, LIU X, HUANG Y, et al. Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials[J]. Nano Energy,2016,27:647-657. doi: 10.1016/j.nanoen.2016.07.031
    [16] ZHANG H, ZHANG X, SUN X, et al. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide[J]. Science Reports,2013,3:3534. doi: 10.1038/srep03534
    [17] VAN B M R J, VOERMANS F, VANKEMPEN H. Bonding in Mg2Si studied with X-ray photoelectron spectroscopy[J]. The Journal of Physical Chemistry,1995,99(23):9519-9522. doi: 10.1021/j100023a033
    [18] WANG L, LIN N, ZHOU J, et al. Silicon nanoparticles obtained via a low temperature chemical "metathesis" synthesis route and their lithium-ion battery properties[J]. Chemical Communications,2015,51(12):2345-2348. doi: 10.1039/C4CC09233C
    [19] SUN L, WANG F, SU T, et al. Room-temperature solution synthesis of mesoporous silicon for lithium ion battery anodes[J]. ACS Applied Materials & Interfaces,2017,9(46):40386-40393.
    [20] ZHANG Y, DU N, CHEN Y, et al. Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes[J]. Nanoscale,2018,10(12):5626-5633. doi: 10.1039/C7NR09599F
    [21] LIN N, WANG L, ZHOU J, et al. A Si/Ge nanocomposite prepared by a one-step solid-state metathesis reaction and its enhanced electrochemical performance[J]. Journal of Materials Chemistry A,2015,3(21):11199-11202. doi: 10.1039/C5TA02216A
    [22] CHEN Y, BAO L, DU N, et al. In situ synthesis of carbon doped porous silicon nanocomposites as high-perfor-mance anodes for lithium-ion batteries[J]. Nanotechnology,2019,30(3):035602. doi: 10.1088/1361-6528/aaeb04
    [23] CHA Y, LEE J I, DONG P, et al. Novel CO2-thermic oxidation process with Mg-basedintermetallic compounds and its application to energy storage materials[M]. Cambridge: Cambridge Open Engage, 2018.
    [24] CUI M, WANG L, GUO X, et al. Designing of hierarchical mesoporous/macroporous silicon-based composite anode material for low-cost high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A,2019,7(8):3874-3881. doi: 10.1039/C8TA11684A
    [25] AN Y, FEI H, ZENG G, et al. Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries[J]. ACS Nano,2018,12(5):4993-5002. doi: 10.1021/acsnano.8b02219
  • 加载中
图(5)
计量
  • 文章访问数:  1201
  • HTML全文浏览量:  543
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 录用日期:  2021-02-02
  • 网络出版日期:  2021-02-18
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回