留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本征型自修复高聚物粘结炸药的制备与损伤愈合性能

李玉斌 王征 潘丽萍 杨志剑 王维欣 蓝林钢

李玉斌, 王征, 潘丽萍, 等. 本征型自修复高聚物粘结炸药的制备与损伤愈合性能[J]. 复合材料学报, 2021, 38(11): 3850-3860. doi: 10.13801/j.cnki.fhclxb.20210107.001
引用本文: 李玉斌, 王征, 潘丽萍, 等. 本征型自修复高聚物粘结炸药的制备与损伤愈合性能[J]. 复合材料学报, 2021, 38(11): 3850-3860. doi: 10.13801/j.cnki.fhclxb.20210107.001
LI Yubin, WANG Zheng, PAN Liping, et al. Preparation and damage healing behavior of intrinsic self-repairing polymeric bonded explosives[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3850-3860. doi: 10.13801/j.cnki.fhclxb.20210107.001
Citation: LI Yubin, WANG Zheng, PAN Liping, et al. Preparation and damage healing behavior of intrinsic self-repairing polymeric bonded explosives[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3850-3860. doi: 10.13801/j.cnki.fhclxb.20210107.001

本征型自修复高聚物粘结炸药的制备与损伤愈合性能

doi: 10.13801/j.cnki.fhclxb.20210107.001
基金项目: 国家自然科学基金 (21875229)
详细信息
    通讯作者:

    李玉斌,硕士,研究员,研究方向为功能性含能复合材料的设计、制备与性能  E-mail:liyubin030102@caep.cn

  • 中图分类号: TJ55; TG156

Preparation and damage healing behavior of intrinsic self-repairing polymeric bonded explosives

  • 摘要: 为减轻高聚物粘结炸药(PBX)由于力、热等环境因素所产生的微裂纹等损伤对于其性能与使用寿命的影响,根据颗粒填充高分子复合材料的结构特性,设计合成了含DA键的本征型自修复高聚物粘结剂,以期实现PBX内部损伤的自主修复。研究结果表明,采用含可逆DA共价键的TAPE-DAPU为粘结剂,设计制备的PBX材料具有较强的损伤愈合能力,当损伤较轻时,该PBX的强度恢复率超过95%,对于较严重的贯穿性损伤,其修复效率也在65%以上。

     

  • 图  1  含DA键的自修复聚氨酯粘结剂的合成路线

    Figure  1.  Synthetic process of self-repairing PU binder containing DA bonds

    图  2  TAPE-DAPU的FTIR图谱 (a) 与核磁氢谱 (b)

    Figure  2.  FTIR (a) and H-NMR (b) spectra of TAPE-DAPU

    图  3  TAPE-DAPU的TG (a) 与DSC (b) 曲线

    Figure  3.  TG (a) and DSC (b) curves of TAPE-DAPU

    图  4  TAPE-DAPU划痕试样修复过程的光学图((a)不同加热温度;(b)120℃下加热不同时间)

    Figure  4.  Optic images of crack healing process of TAPE-DAPU ((a) At different temperatures; (b) At 120℃ with different time)

    图  5  TAPE-DAPU试样多次划痕-修复后的拉伸曲线

    Figure  5.  Tensile curve of TAPE-DAPU after different self-healing cycles

    图  6  平压头加载曲线及相应的应变云图

    Figure  6.  Loading curve and strain cloud map with plane-head clamp (((a), (a’)) 550 N; ((b), (b’)) 750 N)

    图  7  弧形压头加载曲线及相应的应变云图

    Figure  7.  Loading curve and strain cloud map with arc-head clamp (((a), (a’)) Load to 950 N; ((b), (b’)) Load to form crack)

    图  8  两种不同夹具加载后的PBX光学照片((a)平压头;(b)弧形压头)

    Figure  8.  Typical optic images of PBX after loading via two different clamps ((a) Plane-head; (b) Arc-head)

    图  9  平压头夹具加载的PBX试样A1的修复前后的CT图像

    Figure  9.  CT images of PBX sample A1 loading with plane-head clamp((a) Damaged; (b) Healed)

    图  10  弧形夹具预制的不同损伤PBX试样修复后CT图

    Figure  10.  CT images of healed PBX loading with arc-head clamp((a) Sample B2; (b) Sample C2; (c) Sample D2; (d) Sample D1)

    图  11  弧形夹具预制损伤PBX试样的修复效率

    Figure  11.  Repairing efficiency of damaged PBX via arc-head

    表  1  三氨基三硝基苯(TATB)/含DA键的四氨基苯基乙烯基聚氨酯(TAPE-DAPU)的高聚物粘结炸药(PBX)的损伤预制与修复处理方式

    Table  1.   Damage prefabrication and healing methods of Triaminotrinitrobenzene(TATB)/ Tetrakis(4-aminophenyl)ethene polyurethane with Diels-Alder bonds (TAPE-DAPU) based polymer bonded explosive (PBX)

    SampleMode of damage-prefabricationSerial numberMethod of healing-treatment
    A Plane-head clamp, loading to 550 N A1 Heating at 125℃ for 1 h and keeping at 65℃ for 4 h
    A2 Heating at 125℃ for 2 h and keeping at 65℃ for 3 h
    B Arc-head clamp, loading to 950 N and keeping 100 s B1 Heating at 125℃ for 1 h and keeping at 65℃ for 4 h
    B2 Heating at 125℃ for 2 h and keeping at 65℃ for 3 h
    C Arc-head clamp, loading to 1000 N C1 Heating at 125℃ for 1 h and keeping at 65℃ for 4 h
    C2 Heating at 125℃ for 2 h and keeping at 65℃ for 3 h
    D Arc-head clamp, loading to form perforative crack D1 Heating at 125℃ for 1 h and keeping at 65℃ for 4 h
    D2 Heating at 125℃ for 2 h and keeping at 65℃ for 3 h
    下载: 导出CSV

    表  2  TATB-DAPU基PBX不同损伤修复试样的巴西性能

    Table  2.   Brazilian properties of TATB-DAPU based PBX after different damage-healing process

    SampleSerial
    number
    Brazilian
    strength/MPa
    Elongation/%
    Original sample P0 6.45±0.15 1.173±0.020
    A A1 6.28±0.11 0.857±0.015
    A2 4.86±0.10 0.517±0.013
    B B1 4.99±0.06 0.777±0.013
    B2 4.79±0.09 0.627±0.014
    C C1 4.78±0.09 0.617±0.016
    C2 4.50±0.10 0.397±0.011
    D D1 4.45±0.07 0.557±0.012
    D2 4.25±0.09 0.635±0.011
    下载: 导出CSV
  • [1] BERGMAN S D, WUDL F. Mendable polymers[J]. Journal of Materials Chemistry,2008,18(1):41-62. doi: 10.1039/B713953P
    [2] ZHANG M Q, RONG M Z. Self-healing polymers and polymer composites[M]. Hoboken: John Wiley & Sons, Inc, 2011.
    [3] HIA I L, VAHEDI V, PASBAKHSH P. Self-healing polymer composites: prospects, challenges, and applications[J]. Polymer Reviews,2016,56:225-261. doi: 10.1080/15583724.2015.1106555
    [4] ZHANG Q, LIU L B, PAN C G, et al. Review of recent achievements in self-healing conductive materials and their applications[J]. Journal of Materials Science,2018,53(1):27-46. doi: 10.1007/s10853-017-1388-8
    [5] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature,2001,409:794-797. doi: 10.1038/35057232
    [6] LI C, TAN J, GU J, et al. Rapid and efficient synthesis of isocyanate microcapsules via thiol-ene photopolymerization in Pickering emulsion and its application in self-healing coating[J]. Composite Science and Technology,2016,123:250-258. doi: 10.1016/j.compscitech.2016.01.001
    [7] GU J, YANG X, LI C, et al. Synthesis of cyanate ester microcapsules via solvent evaporation technique and its application in epoxy resins as a healing agent[J]. Industrial & Engineering Chemistry Research,2016,55:10941-10946.
    [8] GARCIA S J. Effect of polymer architecture on the intrinsic self-healing character of polymers[J]. European Polymer Journal,2014,53:118-125. doi: 10.1016/j.eurpolymj.2014.01.026
    [9] CHEN Y, KUSHNER A M, WILLIAMS G A, et al. Multiphase design of autonomic self-healing thermoplastic elastomers[J]. Nature Chemistry,2012,4:467-472. doi: 10.1038/nchem.1314
    [10] STEWART S A, BACKHOLM M, BURKE N A D, et al. Cross-linked hydrogels formed through Diels-Alder coupling of furan-and maleimide-modified poly(methyl vinyl ether-alt-maleic acid)[J]. Langmuir,2016,32:1863-1870. doi: 10.1021/acs.langmuir.5b04450
    [11] CASUSO P, ODRIOZOLA I, VICENTE A P, et al. Injectable and selfhealing dynamic hydrogels based on metal(I)-thiolate/disulfide exchange as biomaterials with tunable mechanical properties[J]. Biomacromolecules,2015,16:3552-3561. doi: 10.1021/acs.biomac.5b00980
    [12] ROWAN S J, CANTRILL S J, COUSINS G R L, et al. Dynamic covalent chemistry[J]. Angewandte Chemie International Edition,2002,41:598-952.
    [13] LAI J C, MEI J F, JIA X Y, et al. A stiff and healable polymer based on dynamic-covalent boroxine bonds[J]. Advanced Materials,2016,28:8277-8282. doi: 10.1002/adma.201602332
    [14] CORDIER P, TOURNILHAC F, SOULIE-ZIAKOVIC C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature,2008,451:977-980. doi: 10.1038/nature06669
    [15] BURNWORTH M, TANG L, KUMPFER J R, et al. Optically healable supramolecular polymers[J]. Nature,2011,472:334-337. doi: 10.1038/nature09963
    [16] BODE S, ZEDLER L, SCHACHER F H, et al. Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers[J]. Advanced Materials,2013,25:1634-1638. doi: 10.1002/adma.201203865
    [17] LI C H, WANG C, KEPLINGER C, et al. A highly stretchable autonomous self-healing elastomer[J]. Nature Chemistry,2016,8:618-624. doi: 10.1038/nchem.2492
    [18] CHEN X, DAM M A, ONO K, et al. A thermally re-mendable crosslinked polymeric material[J]. Science,2002,295:1698-1702. doi: 10.1126/science.1065879
    [19] 梁楚尧. Diels-Alder反应在自修复端呋喃甲酯基聚丁二烯黏合剂中的应用[D]. 北京: 北京理工大学, 2017.

    LIANG C. Application of Diels-Alder reaction in self-repairing furo-methyl polybutadiene adhesive[D]. Beijing: Beijing Institute of Technology, 2017(in Chinese).
    [20] 菅晓霞, 宋育芳, 赵盟辉. GAP基自修复黏结剂的制备及性能[J]. 含能材料, 2019, 27(2):131-136. doi: 10.11943/CJEM2018169

    JIAN X, SONG Y, ZHAO M. Preparation and properties of GAP-based self-repairing Binder[J]. Energetic Materials,2019,27(2):131-136(in Chinese). doi: 10.11943/CJEM2018169
    [21] LI Y, YANG Z, ZHANG J, et al. Novel polyurethane with high self-healing efficiency for functional energetic composites[J]. Polymer Testing, 2019, 76: 82-89.
    [22] KOTTERITZSCH J, HAGER M D, SCHUBERT U S. Tuning the self-healing behavior of one-component intrinsic polymers[J]. Polymer, 2015, 69: 321-329.
    [23] DU P, JIA H, CHEN Q, et al. Slightly crosslinked polyurethane with Diels-Alder adducts from trimethylolpropane[J]. Journal Applied Polymer Science,2016,133:43971.
    [24] 何晴, 白静, 史子兴, 印杰. 基于Diels-Alder反应的热可逆交联聚醚胺的制备和表征[J]. 功能高分子学报, 2018, 31(2):140-146.

    HE Q, BAI J, SHI Z, YIN J. Preparation and characterization of thermal reversible polyetheramine based on Diels-Alder reaction[J]. Journal of Functional Polymer,2018,31(2):140-146(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  891
  • HTML全文浏览量:  519
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 录用日期:  2020-12-25
  • 网络出版日期:  2021-01-08
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回