留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热模压预成型工艺参数对复合材料帽型长桁质量的影响

李哲夫 谈源 张俭 岳广全 刘卫平 孙宝忠

李哲夫, 谈源, 张俭, 等. 热模压预成型工艺参数对复合材料帽型长桁质量的影响[J]. 复合材料学报, 2021, 38(10): 3270-3280. doi: 10.13801/j.cnki.fhclxb.20201215.004
引用本文: 李哲夫, 谈源, 张俭, 等. 热模压预成型工艺参数对复合材料帽型长桁质量的影响[J]. 复合材料学报, 2021, 38(10): 3270-3280. doi: 10.13801/j.cnki.fhclxb.20201215.004
LI Zhefu, TAN Yuan, ZHANG Jian, et al. Effects of hot stamp forming process parameters on quality of the hat-shaped structure preforms of composites[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3270-3280. doi: 10.13801/j.cnki.fhclxb.20201215.004
Citation: LI Zhefu, TAN Yuan, ZHANG Jian, et al. Effects of hot stamp forming process parameters on quality of the hat-shaped structure preforms of composites[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3270-3280. doi: 10.13801/j.cnki.fhclxb.20201215.004

热模压预成型工艺参数对复合材料帽型长桁质量的影响

doi: 10.13801/j.cnki.fhclxb.20201215.004
基金项目: 上海市科技创新行动计划项目(19DZ1100300);国家商用飞机制造工程技术研究中心创新基金项目(COMAC-SFGS-2019-344)
详细信息
    通讯作者:

    岳广全,博士后,高级工程师,硕士生导师,研究方向为纤维增强树脂基复合材料成型工艺  E-mail: yueguangquan@dhu.edu.cn

  • 中图分类号: V261;TB332

Effects of hot stamp forming process parameters on quality of the hat-shaped structure preforms of composites

  • 摘要: 本文采用热模压预成装置将碳纤维单向预浸料层板制备成帽型结构长桁预成型体,通过对不同工艺条件下制备的帽型长桁预成型体的表观质量、厚度和纤维偏转角度进行检测,考察和分析了成型温度和速度对预成型体质量的影响规律。当成型温度较低时,由于树脂的黏度较高,预浸料层间摩擦力较大。预成型体表面出现褶皱现象,并且纤维由于受到层间剪切的作用而出现角度偏转。当成型温度较高时,树脂受到压力作用更易流动。这不仅降低了预成型体的厚度,同时也减弱了树脂束缚纤维的能力,使纤维偏转角度增加。而当成型速度增加时,预浸料层间的摩擦力使纤维的偏转角度增大。因此在预成型过程中,为了提高预成型质量,工艺温度和成型速度应控制在一定范围内。

     

  • 图  1  热模压预成型装置 (a) 及帽型长桁成型模具 (b)

    Figure  1.  Device of hot stamp forming (a) and forming mold of hat-shaped structure preforms (b)

    图  2  帽型长桁预成型体截面尺寸

    Figure  2.  Section dimensions of the hat-shaped structure preforms

    图  3  热模压预成型过程(A-B: 压边条; C: 冲头; D: 活动芯模)

    Figure  3.  Process of hot stamp forimg (A-B: Blank holder; C: Punch; D: Activity core)

    图  4  预成型体厚度检测位置 (a)、预成型体纤维偏转金相检测位置 (b) 及预成型体R角厚度金相检测位置 (c)

    Figure  4.  Thickness detection positions of preforms (a), fiber deflection angle detection positions of preforms (b) and fillet’s thickness detection positions of preforms (c)

    图  5  黑白二值化与分水岭算法处理示意图

    Figure  5.  Process of binarization and watershed algorithm

    图  6  不同角度铺层纤维的剖面示意图

    Figure  6.  Cross sections of fibers at different angles

    图  7  不同成型温度下的帽型长桁预成型体的表观形貌

    Figure  7.  Apparent morphologies of preforms with the hat-shaped structure at different temperatures

    图  8  帽型长桁预成型体典型的缺陷((a)褶皱;(b)树脂分布不均)

    Figure  8.  Typical defects of preforms with the hat-shaped structure ((a) Wrinkle; (b) Resin starvation defect)

    图  9  不同成型温度下的帽型长桁预成型体的各位置的厚度

    Figure  9.  Thickness of preforms with the hat-shaped structure at different temperatures

    图  10  不同成型温度下帽型长桁预成型体45°铺层纤维的偏转角度

    Figure  10.  45° fiber’s deflection angles of preforms with the hat-shaped structure at different forming temperatures

    图  11  不同成型速度下的帽型长桁预成型体的表观形貌

    Figure  11.  Apparent mass of preforms with the hat-shaped structure in different forming speed

    图  12  不同成型速度下的帽型长桁预成型体的各位置的厚度

    Figure  12.  Thickness of preforms with the hat-shaped structure in different forming speeds

    图  13  不同成型速度下帽型长桁预成型体45°铺层纤维的偏转角度

    Figure  13.  45° fiber’s deflection angle of preforms with the hat-shaped structure in different forming speeds

  • [1] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797.

    GU Yizhuo, LI Min, LI Yanxia, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronauticaet Astronautica Sinica,2015,36(8):2773-2797(in Chinese).
    [2] 李培旭, 陈萍, 苏佳智, 等. 复合材料先进液体成型技术的航空应用与最新发展[J]. 玻璃钢/复合材料, 2016(8):99-104.

    LI Peixu, CHEN Ping, SU Jiazhi, et al. The recent development of advanced liquid composite molding technique and its application in aviation[J]. Fiber Reinforced Plastics/Composites,2016(8):99-104(in Chinese).
    [3] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    MA Liming, ZHANG Jiazheng, YUE Guangquan, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [4] 孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11):61-64.

    SUN Zhengqi, WU Anru. Application of advanced compo-site in aircraft structures[J]. Materials Reports,2015,29(11):61-64(in Chinese).
    [5] 文立伟, 肖军, 王显峰, 等. 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47(5):637-649.

    WEN Liwei, XIAO Jun, WANG Xianfeng, et al. Progress of automated placement technology for composites in china[J]. Journal of Nanjing University of Aeronautics & Astronautics,2015,47(5):637-649(in Chinese).
    [6] 陈亚莉. 复合材料成型工艺在A400M军用运输机上的应用[J]. 航空制造技术, 2008(10):32-35. doi: 10.3969/j.issn.1671-833X.2008.03.004

    CHEN Yali. Application of composite forming technique in military freighter A400M[J]. Aeronautical Manufacturing Technology,2008(10):32-35(in Chinese). doi: 10.3969/j.issn.1671-833X.2008.03.004
    [7] DE M D. Process for the realization of a stiffener made of composite material with an omega section: USA, 8, 636, 935[P]. 2014-1-28.
    [8] PARLA G C. Device and method of manufacturing omega stringers: USA, 9, 914, 270[P]. 2018-3-13.
    [9] FARNAND K, ZOBEIRY N, POURSARTIP A, et al. Micro-level mechanisms of fiber waviness and wrinkling during hot drape forming of unidirectional prepreg compo-sites[J]. Composites Part A: Applied Science and Manufacturing,2017,103:168-77. doi: 10.1016/j.compositesa.2017.10.008
    [10] BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations[J]. Composites Part B: Engineering,2018,141:234-49. doi: 10.1016/j.compositesb.2017.12.061
    [11] 陈萍, 赵月青, 陈菲, 等. 单向碳纤维/环氧树脂预浸料叠层的面内变形行为[J]. 复合材料学报, 2020, 37(5):1049-1055.

    CHEN Ping, ZHAO Yueqing, CHEN Fei, et al. In-plane deformation behavior of unidirectional carbon fiber/epoxy prepreg layups[J]. Acta Materiae Compositae Sinica,2020,37(5):1049-1055(in Chinese).
    [12] MUKHOPADHYAY S, JONES M I, HALLETT S R. Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2015,73:132-42. doi: 10.1016/j.compositesa.2015.03.012
    [13] BARAN I, STRAUMIT I, SHISHKINA O, et al. X-ray computed tomography characterization of manufacturing induced defects in a glass/polyester pultruded profile[J]. Composite Structures,2018,195:74-82. doi: 10.1016/j.compstruct.2018.04.030
    [14] HÖRRMANN S, ADUMITROAIE A, VIECHTBAUER C, et al. The effect of fiber waviness on the fatigue life of CFRP materials[J]. International Journal of Fatigue,2016,90:139-47. doi: 10.1016/j.ijfatigue.2016.04.029
    [15] 姚双, 李敏, 顾轶卓, 等. 碳纤维复合材料C形结构热隔膜成型工艺[J]. 北京航空航天大学学报, 2013, 39(1):95-99.

    YAO Shuang, LI Ming, GU Yizhuo, et al. Hot diaphragm forming of carbon fiber composite with C-shaped structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(1):95-99(in Chinese).
    [16] WANG L, XU P, PENG X, et al. Characterization of inter-ply slipping behaviors in hot diaphragm preforming: Experiments and modelling[J]. Composites Part A: Applied Science and Manufacturing,2019,121:28-35. doi: 10.1016/j.compositesa.2019.03.012
    [17] 孙凯, 安学锋, 闫丽. 复合材料帽形长桁热隔膜成型工艺研究[J]. 化工新型材料, 2020, 48(2):166-168.

    SUN Kai, AN Xuefeng, YAN Li. Hot diaphragm preforming process for composite hat-shaped stringer[J]. New Chemical Materials,2020,48(2):166-168(in Chinese).
    [18] 马开维, 李博, 朱佳强, 等. 工艺参数对复合材料长桁成型载荷的影响[J]. 航空制造技术, 2019, 62(12):72-78.

    MA Kaiwei, LI Bo, ZHU Jiaqiang, et al. Effect of process parameters on forming load of composite stringer[J]. Aeronautical Manufacturing Technology,2019,62(12):72-78(in Chinese).
    [19] 马开维, 李博, 朱佳强, 等. 工艺参数对复合材料长桁预制体变形成型制件质量的影响[J]. 北京化工大学学报(自然科学版), 2019, 46(6):36-44.

    MA Kaiwei, LI Bo, ZHU Jiaqiang, et al. Effects of deformation forming process parameters on quality of the compo-sites stringers forming parts[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition),2019,46(6):36-44(in Chinese).
    [20] 何林锋, 张鹏飞, 李希岩. 浅析复合材料制造过程中的缺陷处理[J]. 科技视界, 2017(2):10. doi: 10.3969/j.issn.2095-2457.2017.26.004

    HE Lingfeng, ZHANG Pengfei, LI Xiyan. The analysis of defect treatment in the manufacturing process of composite materials[J]. Science & Technology Vision,2017(2):10(in Chinese). doi: 10.3969/j.issn.2095-2457.2017.26.004
    [21] SHARP N D, GOODSELL J E, FAVALORO A J. Measuring fiber orientation of elliptical fibers from optical microscopy[J]. Journal of Composites Science,2019,3(1):23. doi: 10.3390/jcs3010023
    [22] LEE W I, LOOS A C, SPRINGER G S. Heat of reaction, degree of cure, and viscosity of Hercules 3501-6 resin[J]. Journal of Composite Materials,1982,16(6):510-520. doi: 10.1177/002199838201600605
    [23] GORCZYCA-COLE J L, SHERWOOD J A, CHEN J. A friction model for thermostamping commingled glass-polypropylene woven fabrics[J]. Composites Part A: Applied Science and Manufacturing,2007,38(2):393-406. doi: 10.1016/j.compositesa.2006.03.006
  • 加载中
图(13)
计量
  • 文章访问数:  1272
  • HTML全文浏览量:  521
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 录用日期:  2020-12-01
  • 网络出版日期:  2020-12-15
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回