留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响

刘志明 许昶

刘志明, 许昶. 胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响[J]. 复合材料学报, 2020, 37(0): 1-8
引用本文: 刘志明, 许昶. 胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响[J]. 复合材料学报, 2020, 37(0): 1-8
刘志明, 许昶. 胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响[J]. 复合材料学报, 2020, 37(0): 1-8
Citation: 刘志明, 许昶. 胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响[J]. 复合材料学报, 2020, 37(0): 1-8

胶层厚度对碳纤维/双马来酰亚胺树脂复合材料平-折-平混合连接接头力学性能的影响

基金项目: 十三五国家重点研发计划:车体、设备舱及转向架疲劳可靠性研究(2016YFB1200505-011)
详细信息
    通讯作者:

    刘志明,博士,教授,研究方向为结构疲劳及其可靠性 Email:zhmliu1@m.bjtu.edu.cn

  • 中图分类号: TB331

Effect of adhesive thickness on the mechanical properties of carbon fiber/bismaleimide resin composite flat-joggle-flat hybrid (bonded/bolted) joint

  • 摘要: 以碳纤维/双马来酰亚胺树脂复合材料平-折-平(FJF)连接接头为对象,通过试验对比分析了特定胶层厚度下连接接头的静强度和疲劳性能,并探究了胶层厚度对混合连接接头力学性能的影响。利用背面应变技术对搭接区端部胶层开裂进行监测。利用有限元软件ABAQUS对不同胶层厚度下FJF混合接头搭接区胶层应力分布进行了分析。结果表明,FJF混合接头的平均拉伸极限载荷、搭接区端部胶层开裂平均循环次数和平均疲劳寿命均随着胶层厚度在0.1~0.3 mm范围内增加而增大。不同胶层厚度的混合接头均经历相同的失效阶段,即搭接区胶层端部开裂,胶层沿搭接区断裂扩展,最终靠近加载端孔边拉伸断裂,呈现±45°断口。随着胶层厚度在0.1~0.3 mm范围的增大,搭接区端部胶层剥离应力和剪切应力及孔边胶层压缩应力均减小。在胶层厚度为0.1~0.3 mm范围内,剪应力是胶层破坏的控制因素。
  • 图  1  平-折-平(FJF)混合连接接头示意图

    Figure  1.  Schematic diagram of flat-joggle-flat (FJF) hybrid joint

    (c) FJF hybrid joint d-Hole diameter; W-Width; E-Edge distance; ta-Laminate thickness; tc-Adhesive thickness; r1-Larger fillet diameter; r2-Smaller fillet diameter; θ-Angle between flat and joggle segment

    图  2  拉伸测试设备

    Figure  2.  Tensile testing equipment

    图  3  贴片位置

    Figure  3.  Strain gage location

    图  4  不同厚度下3种FJF连接接头极限载荷对比

    Figure  4.  Ultimate load comparison of three kinds of FJF joints with different adhesive thicknesses

    图  5  3种FJF连接接头试样典型载荷-位移曲线

    Figure  5.  Typical load-displacement curves of the three kinds of FJF joint specimens

    图  6  3种FJF连接接头试样最终失效模式

    Figure  6.  Final failure modes of the three kinds of FJF joint specimens

    图  7  不同胶层厚度下FJF混合接头试样典型载荷-位移曲线

    Figure  7.  Typical load-displacement curves of the FJF hybrid joint specimens with different adhesive thicknesses

    图  8  3种FJF连接接头平均疲劳寿命对比

    Figure  8.  Average fatigue life comparison of three kinds of FJF joints

    图  9  不同胶层厚度下FJF混合接头平均疲劳寿命对比

    Figure  9.  Average fatigue life comparison of FJF hybrid joints with different adhesive thicknesses

    图  10  载荷等级为70%时FJF含胶接头背面应变值

    Figure  10.  Backface strain values of FJF joints with adhesive when the load level equals 70%

    图  11  FJF混合连接接头三维有限元模型

    Figure  11.  3D finite element model of the FJF hybrid joint

    图  12  FJF混合连接接头搭接区胶层剥离应力分布

    Figure  12.  Adhesive peel stress distribution in the overlap zone of the FJF hybrid joint

    图  13  FJF混合连接接头搭接区胶层剪切应力分布

    Figure  13.  Adhesive shear stress distribution in the overlap zone of the FJF hybrid joint

    表  1  FJF接头拉伸试验设计

    Table  1.   Tensile experiment design of FJF joints

    Test typeTest numberSpecimen numberSpecimen quantity
    Static strength 1 TS-Bonded-t01 3
    2 TS-Bonded-t03 3
    3 TS-Bonded-t02 3
    4 TS-Bolted 3
    5 TS-Hybrid-t02 3
    6 TS-Hybrid-t01 3
    Fatigue 7 TS-Hybrid-t03 3
    8 TF-Bonded-t02 9
    9 TF-Bolted 9
    10 TF-Hybrid-t02 9
    11 TF-Hybrid-t01 9
    12 TF-Hybrid-t03 9
    Notes: TS—Tensile static; TF—Tensile fatigue; Word in the middle refers to the joint type; Word at the right side refers to the adhesive thickness value.
    下载: 导出CSV

    表  2  FJF含胶接头搭接区端部胶层开裂平均循环次数

    Table  2.   Average cycles of adhesive cracking at the end of the overlap zone for FJF joints with adhesive

    Pmax/PuTF-Bonded-
    t02
    TF-Hybrid-
    t01
    TF-Hybrid-
    t02
    TF-Hybrid-
    t03
    90% 34 22 37 48
    80% 701 404 1 074 2 222
    70% 73 644 31 126 90 409 219 180
    下载: 导出CSV

    表  3  不同胶层厚度下FJF混合连接接头搭接区端部和孔边胶层应力

    Table  3.   Adhesive stresses at the end of the overlap zone and around the bolt hole of the FJF hybrid joint with different adhesive thicknesses

    Adhesive thickness/mmPositionPeel stress/
    MPa
    Shear stress/
    MPa
    0.1 End of the overlap zone 6.42 6.43
    Hole edge −18.85 ±0.84
    0.2 End of the overlap zone 3.72 4.52
    Hole edge −17.72 ±0.71
    0.3 End of the overlap zone 2.60 3.59
    Hole edge −17.46 ±0.67
    下载: 导出CSV
  • [1] ARENAS J M, NARBÓN J J, ALĺA C. Optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weibull distribution[J]. International Journal of Adhesion and Adhesives,2010,30:160-165. doi:  10.1016/j.ijadhadh.2009.12.003
    [2] XU W, WEI Y G. Strength and interface failure mechanism of adhesive joints[J]. International Journal of Adhesion and Adhesives,2012,34:80-92. doi:  10.1016/j.ijadhadh.2011.12.004
    [3] NAITO K, ONTA M, KOGO Y. The effect of adhesive thickness on tensile and shear strength of polyimide adhesive[J]. International Journal of Adhesion and Adhesives,2012,36:77-85. doi:  10.1016/j.ijadhadh.2012.03.007
    [4] XU W, WEI Y G. Influence of adhesive thickness on local interface fracture and overall strength of metallic adhesive bonding structures[J]. International Journal of Adhesion and Adhesives,2013,40:158-167. doi:  10.1016/j.ijadhadh.2012.07.012
    [5] 王玉奇, 何晓聪, 邢保英, 等. 胶厚对单搭粘接接头强度影响的试验与仿真研究[J]. 机械强度, 2014, 36(6):873-877.

    WANG Yuqi, HE Xiaocong, XING Baoying, et al. Research on the influence of bondline thickness on strength of adhesive bonding of single lap joints based on experiment and simulation[J]. Journal of Mechanical Strength,2014,36(6):873-877(in Chinese).
    [6] BOUTAR Y, NAIMI S, MEZLINI S, et al. Effect of adhesive thickness and surface roughness on the shear strength of aluminium one component polyurethane adhesive single-lap joints for automotive applications[J]. Journal of Adhesion Science and Technology,2016,30:1913-1929. doi:  10.1080/01694243.2016.1170588
    [7] AKHAVAN-SAFAR A, AYATOLLAHI M R, DA SILVA L F M. Strength prediction of adhesively bonded single lap joints with different bondline thicknesses: A critical longitudinal strain approach[J]. International Journal of Solids and Structures,2017,109:189-198. doi:  10.1016/j.ijsolstr.2017.01.022
    [8] BOUTAR Y, NAIMI S, MEZLINI S, et al. Fatigue resistance of an aluminium one-component polyurethane adhesive joint for the automotive industry: Effect of surface roughness and adhesive thickness[J]. International Journal of Adhesion and Adhesives,2018,83:143-152. doi:  10.1016/j.ijadhadh.2018.02.012
    [9] TAIB A A, BOUKHILI R, ACHIOU S, et al. Bonded joints with composite adherends. Part I. Effect of specimen configuration, adhesive thickness, spew fillet and adherend stiffness on fracture[J]. International Journal of Adhesion and Adhesives,2006,26(4):226-36. doi:  10.1016/j.ijadhadh.2005.03.015
    [10] ANYFANTIS K N, TSOUVALIS N G. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents-Part I: experiments[J]. Composite Structures,2013,96:850-857. doi:  10.1016/j.compstruct.2012.08.060
    [11] TANG J H, SRIDHAR I, SRIKANTH N. Static and fatigue failure analysis of adhesively bonded thick composite single lap joints[J]. Composites Science and Technology,2013,86:18-25. doi:  10.1016/j.compscitech.2013.06.018
    [12] 刘亚文, 宋建国, 马毓, 等. 胶层厚度对双搭接胶连接接头承载力的影响分析[J]. 玻璃钢/复合材料, 2012, 3(2):20-24. doi:  10.3969/j.issn.1003-0999.2012.02.005

    LIU Yawen, SONG Jianguo, MA Yu, et al. Impact analysis of load capability of double lap adhesive joint by adhesive thickness[J]. Fiber Reinforced Plastics/Composites,2012,3(2):20-24(in Chinese). doi:  10.3969/j.issn.1003-0999.2012.02.005
    [13] 熊东箭. 玻纤增强复合材料单搭接胶接接头强度研究[D]. 长沙: 湖南大学, 2018: 41-43.

    XIONG Dongjian. A study on adhesive strength of single lap structural adhesive join of glass fiber reinforced composites[D]. Changsha: Hunan University, 2018: 41-43. (in Chinese).
    [14] 袁辉, 刘鹏飞, 王景全, 等. 胶层厚度对胶连接接头承载力的影响机理与控制[J]. 解放军理工大学学报(自然科学版), 2013, 14(1):53-57.

    YUAN Hui, LIU Pengfei, WANG Jingquan, et al. Mechanism of layer thickness on bearing capacity of adhesive bonding joints and control[J]. Journal of PLA University of Science and Technology (Natural Science Edition),2013,14(1):53-57(in Chinese).
    [15] KISHORE A N, PRASAD N S. An experimental study of Flat-Joggle-Flat bonded joints in composite laminates[J]. International Journal of Adhesion & Adhesives,2012,35(7):55-58.
    [16] 王毅, 冯宪章, 李磊, 等. 复合材料层合板二次共固化补强胶层失效分析研究[J]. 机械强度, 2012, 34(6):862-867.

    WANG Yi, FENG Xianzhang, LI Lei, et al. Bonding adhesive damage study of the secondary co-cure reinforcement tensile experiment[J]. Journal of Mechanical Strength,2012,34(6):862-867(in Chinese).
    [17] MCCARTHY M A, MCCARTHY C T, Lawlor V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part I-model development and validation[J]. Composite Structures,2005,71(2):140-158. doi:  10.1016/j.compstruct.2004.09.024
    [18] SHENOY V, ASHCROFT I A, CRITCHLOW G W, et al. An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain[J]. International Journal of Adhesion and Adhesives,2009,29:361-371. doi:  10.1016/j.ijadhadh.2008.07.008
    [19] 许昶, 刘志明. CFRP平-折-平连接接头试验研究与数值模拟[J]. 北京航空航天大学学报, 2019, 45(11):2207-2216.

    XU Chang, LIU Zhiming. Experimental study and numerical simulation on CFRP flat-joggle-flat joints[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(11):2207-2216(in Chinese).
  • [1] 栾建泽, 那景新, 谭伟, 慕文龙, 秦国锋.  服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测, 复合材料学报. 2020, 37(8): 1884-1893. doi: 10.13801/j.cnki.fhclxb.20191014.001
    [2] 杜婷婷, 叶云霞, 刘远方, 李浩楠, 任旭东, 符永宏.  纳秒激光调控CFRP表面润湿性及其对胶接性能的影响, 复合材料学报. 2020, 37(): 1-11.
    [3] 戴海军, 李嘉禄, 孙颖, 刘梁森, 陈利.  纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能, 复合材料学报. 2020, 37(8): 1997-2004. doi: 10.13801/j.cnki.fhclxb.20191129.001
    [4] 郭丽君, 陆方舟, 李想, 蔡登安, 张庆茂, 陈建农, 刘伟先, 周光明.  碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制, 复合材料学报. 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
    [5] 周浩然, 荆佳奇, 王德志, 范旭鹏, 袁镇, 赵立伟.  双马来酰亚胺工艺改性及性能, 复合材料学报. 2020, 37(6): 1278-1284. doi: 10.13801/j.cnki.fhclxb.20191021.003
    [6] 谢波涛, 高亮, 江帅, 李梦军.  含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应, 复合材料学报. 2020, 37(11): 1-9.
    [7] 陈萍, 赵月青, 陈菲, 张博明.  单向碳纤维/环氧树脂预浸料叠层的面内变形行为, 复合材料学报. 2020, 37(5): 1049-1055. doi: 10.13801/j.cnki.fhclxb.20190730.006
    [8] 巩桂芬, 邢韵, 李泽, 辛浩, 曹景飞, 罗艳梅.  表面修饰纳米晶纤维素及其在双马来酰亚胺树脂中的应用, 复合材料学报. 2020, 37(6): 1334-1343. doi: 10.13801/j.cnki.fhclxb.20191104.001
    [9] 栾建泽, 宋学伟, 那景新, 谭伟, 慕文龙.  服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响, 复合材料学报. 2020, 37(5): 1088-1095. doi: 10.13801/j.cnki.fhclxb.20190708.001
    [10] 陈宇飞, 武耘仲, 代国庆, 李治国, 滕成君, 崔巍巍.  SiO2包覆石墨烯/双马来酰亚胺复合材料的表征及性能, 复合材料学报. 2020, 37(5): 1015-1023. doi: 10.13801/j.cnki.fhclxb.20190911.001
    [11] 陈宇飞, 代国庆, 田麒源, 董磊, 崔巍巍, 滕成君.  Al2O3与两种热塑性树脂协同改性双马来酰亚胺基复合材料微观结构与性能, 复合材料学报. 2020, 37(6): 1260-1267. doi: 10.13801/j.cnki.fhclxb.20190925.001
    [12] 王遥, 曹东风, 胡海晓, 冀运东, 宋培豪, 李书欣.  单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究, 复合材料学报. 2020, 37(): 1-11.
    [13] 杨凤祥, 陈静芬, 陈善富, 刘志明.  基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测, 复合材料学报. 2020, 37(9): 2207-2222. doi: 10.13801/j.cnki.fhclxb.20200110.002
    [14] 段瑛涛, 武肖鹏, 王智文, 敬敏, 栗娜, 刘强, 宁慧铭, 胡宁.  碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能, 复合材料学报. 2020, 37(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20200215.002
    [15] 陈丁丁, 朱萌, 胡其高, 王曼漪, 王蕊.  含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制, 复合材料学报. 2020, 37(6): 1312-1320. doi: 10.13801/j.cnki.fhclxb.20190822.001
    [16] 胡晓兰, 刘文军, 余荣禄, 周川, 李伟东, 周玉敬, 刘刚, 益小苏.  含磷聚芳醚酮-双马来酰亚胺树脂(PAEK-P-BMI)及碳纤维/PAEK-P-BMI复合材料, 复合材料学报. 2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001
    [17] 胡春幸, 侯玉亮, 铁瑛, 李成, 田可可.  基于遗传算法的CFRP层合板单搭胶接结构的多目标优化, 复合材料学报. 2020, 37(): 1-12.
    [18] 吴佳奇, 李刚, 杨小平, 苏清福.  耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能, 复合材料学报. 2020, 37(7): 1505-1512. doi: 10.13801/j.cnki.fhclxb.20191211.001
    [19] 周春苹, 刘付超, 周长聪, 李兴德.  石英纤维/环氧树脂复合材料结构静强度的可靠度计算及全局灵敏度分析, 复合材料学报. 2020, 37(7): 1611-1618. doi: 10.13801/j.cnki.fhclxb.20190930.002
    [20] 赵晟, 张继文.  一种基于复合材料剩余强度的衍生疲劳损伤模型, 复合材料学报. 2020, 37(10): 1-9. doi: 10.13801/j.cnki.fhclxb.20191224.002
  • 加载中
计量
  • 文章访问数:  166
  • HTML全文浏览量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 录用日期:  2020-01-12

目录

    /

    返回文章
    返回