留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验

于本田 陈延飞 王焕 李秀东 谢超 李盛

于本田, 陈延飞, 王焕, 等. 大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验[J]. 复合材料学报, 2021, 38(8): 2737-2746. doi: 10.13801/j.cnki.fhclxb.20210430.001
引用本文: 于本田, 陈延飞, 王焕, 等. 大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验[J]. 复合材料学报, 2021, 38(8): 2737-2746. doi: 10.13801/j.cnki.fhclxb.20210430.001
YU Bentian, CHEN Yanfei, WANG Huan, et al. Experiment on control measures of shrinkage and cracking of high strength manufactured sand concrete containing a large amount of high absorbency stone powder[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2737-2746. doi: 10.13801/j.cnki.fhclxb.20210430.001
Citation: YU Bentian, CHEN Yanfei, WANG Huan, et al. Experiment on control measures of shrinkage and cracking of high strength manufactured sand concrete containing a large amount of high absorbency stone powder[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2737-2746. doi: 10.13801/j.cnki.fhclxb.20210430.001

大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验

doi: 10.13801/j.cnki.fhclxb.20210430.001
基金项目: 中国铁路总公司科技研究开发计划(P2018G004);长江学者和创新团队发展计划(IRT_15R29)
详细信息
    通讯作者:

    于本田,博士,副教授,硕士生导师,研究方向为水泥混凝土材料与结构 E-mail:yubentian@mail.lzjtu.cn

  • 中图分类号: TB332;TU528

Experiment on control measures of shrinkage and cracking of high strength manufactured sand concrete containing a large amount of high absorbency stone powder

  • 摘要: 针对大掺量高吸附性石粉高强机制砂混凝土早期易发生收缩开裂的问题,开展了掺加膨胀剂、减缩剂、聚乙烯醇(PVA)纤维、高吸水树脂(SAP)混凝土的早期收缩、抗裂和力学试验,并利用核磁共振仪和扫描电子显微镜对混凝土孔结构和微观形貌进行了测试,揭示抑制收缩开裂的机制。试验结果表明:掺入膨胀剂、减缩剂、PVA纤维、预吸水SAP均能有效抑制混凝土早期收缩和开裂,其中掺预吸水SAP降低早期收缩的效果最好,收缩应变可降低93%,PVA纤维抑制早期开裂的作用最明显,总开裂面积可降低68.26%,同时,掺入两者会使混凝土力学性能提高,而掺入膨胀剂和减缩剂会使混凝土力学性能降低。SEM图像表明,SAP能将预吸收的水分释放到混凝土中,促进水泥水化反应,而PVA纤维的掺入改善了混凝土内部孔隙结构,有良好的填充作用和桥接作用。核磁共振试验表明,抑制收缩开裂的机制是通过改善混凝土孔隙结构,增强界面密实度,从而减小早期收缩,进而提高抗裂性能。

     

  • 图  1  石粉的XRD图谱

    Figure  1.  XRD pattern of stone powder

    图  2  水泥、高吸水树脂(SAP)、膨胀剂、石粉的粒度分布曲线

    Figure  2.  Particle size distribution of cement, super absorbent polymer (SAP), expanding agent and stone powder

    图  3  混凝土早期收缩曲线

    Figure  3.  Early-age shrinkage curve of concrete

    图  4  混凝土早期抗裂试验

    Figure  4.  Early crack resistance test of concrete

    图  5  混凝土力学性能测试结果

    Figure  5.  Mechanical properties of concrete

    图  6  不同配合比混凝土${T_2}$谱分布曲线

    Figure  6.  T2 spectral distribution of concretes with different mix ratios

    图  7  混凝土SEM图像

    Figure  7.  SEM images of concrete

    表  1  混凝土配合比

    Table  1.   Contents of concrete mixes kg·m−3

    SampleCementFly ashSlag powderSandStone powderCrushed stoneWaterWater reducerEASRAPVASAP
    Concrete 350 100 50 606 116 1 038 140 6.5
    EA/concrete 330 100 50 606 116 1 038 140 6.5 20
    SRA/concrete 350 100 50 606 116 1 038 140 6.5 7.5
    PVA/concrete 350 100 50 606 116 1 038 140 6.5 1.2
    SAP/concrete 350 100 50 606 116 1 038 120 7.5 1
    Notes: EA—Expanding agent; SRA—Shrinkage reducing agent; PVA—Polyvinyl alcohol fiber.
    下载: 导出CSV

    表  2  混凝土早期开裂试验结果

    Table  2.   Early-age cracking experiment results of concrete

    SampleInitial
    cracking
    time/min
    Width of
    crack/
    mm
    Crack
    direction
    Average
    cracking
    area/mm2
    Number of cracks
    per unit area/
    (MPa·m−2)
    Total cracking
    area per unit
    area/(mm2·m−2)
    Crack reduction
    factor η/%
    Concrete 75 0.87 More along the knife-edge 139.61 0.833 1 162.95
    EA/concrete 90 0.49 More along the knife-edge 97.47 0.625 609.18 47.62
    SRA/concrete 80 0.50 Small amount of cis-edge, more fine cracks 85.15 1.042 887.26 23.70
    PVA/concrete 160 0.38 More along the knife-edge 59.05 0.625 369.09 68.26
    SAP/concrete 120 0.42 More along the knife-edge 89.51 0.833 745.62 35.88
    下载: 导出CSV

    表  3  混凝土${T_2}$谱面积测试结果

    Table  3.   ${T_2}$ spectral area results of concrete

    SampleTotal peak areaThe first peakThe second peakThe third peak
    AreaProportion/%AreaProportion/%AreaProportion/%
    Concrete 11 391.70 6 320.86 55.49 2 828.12 24.83 2 242.72 19.68
    EA/concrete 10 665.45 8 141.79 76.34 2 153.11 20.19 370.55 3.47
    SRA/concrete 10 594.84 7 249.63 68.43 2 929.72 27.65 370.48 3.50
    PVA/concrete 9 855.96 7 168.34 72.73 2 197.94 22.30 489.67 4.97
    SAP/concrete 8 971.97 6 167.08 68.74 2 804.89 31.26 0 0
    下载: 导出CSV
  • [1] 陈正发, 刘桂凤, 秦彦龙, 等. 恶劣环境下机制砂混凝土的强度和耐久性能[J]. 建筑材料学报, 2012, 15(3):391-394. doi: 10.3969/j.issn.1007-9629.2012.03.019

    CHEN Zhengfa, LIU Guifeng, QIN Yanlong, et al. Strength and durability of concrete with manufactured-sand in severe environment[J]. Journal of Building Materials,2012,15(3):391-394(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.03.019
    [2] 李北星, 王稷良, 柯国炬, 等. 机制砂亚甲蓝值对混凝土性能的影响研究[J]. 水利水电技术, 2009, 40(4):30-32, 35. doi: 10.3969/j.issn.1000-0860.2009.04.008

    LI Beixing, WANG Jiliang, KE Guojv, et al. Study on effect of methylene blue value of manufactured sand on performance of concrete[J]. Water Conservancy and Hydropower Technology,2009,40(4):30-32, 35(in Chinese). doi: 10.3969/j.issn.1000-0860.2009.04.008
    [3] 刘战鳌, 周明凯, 李北星. 石粉对机制砂混凝土性能影响的研究进展[J]. 材料导报, 2014, 28(19):100-103.

    LIU Zhan’ao, ZHOU Mingkai, LI Beixing, et al. Research progress on influence of microfines on manufactured sand concrete’s performance[J]. Materials Reports,2014,28(19):100-103(in Chinese).
    [4] GUPTA L K, VYAS A K. Impact on mechanical properties of cement sand mortar containing waste granite powder[J]. Construction and Building Materials,2018,191:155-164. doi: 10.1016/j.conbuildmat.2018.09.203
    [5] 杨玉辉, 周明凯, 赵华耕. C80机制砂泵送混凝土的配制及其影响因素[J]. 武汉理工大学学报, 2005, 27(8):27-30. doi: 10.3321/j.issn:1671-4431.2005.08.009

    YANG Yuhui, ZHOU Mingkai, ZHAO Huageng. Preparation and influencing factors of C80 pumpcrete with machine-made sand[J]. Journal of Wuhan University of Technology,2005,27(8):27-30(in Chinese). doi: 10.3321/j.issn:1671-4431.2005.08.009
    [6] 田建平, 周明凯, 蔡基伟. 高强机制砂混凝土中石粉与粉煤灰的复合效应[J]. 武汉理工大学学报, 2006, 28(3):55-57, 60. doi: 10.3321/j.issn:1671-4431.2006.03.016

    TIAN Jianping, ZHOU Mingkai, CAI Jiwei. Composition effects of FA and stone powder in high strength concrete with machine-made sand[J]. Journal of Wuhan University of Technology,2006,28(3):55-57, 60(in Chinese). doi: 10.3321/j.issn:1671-4431.2006.03.016
    [7] 高育欣, 唐天明, 林喜华, 等. C80机制砂高强混凝土的研制及工程应用[J]. 混凝土, 2011(9):99-101. doi: 10.3969/j.issn.1002-3550.2011.09.031

    GAO Yuxin, TANG Tianming, LIN Xihua, et al. Research and application of C80 machine-made sand high strength concrete[J]. Concrete,2011(9):99-101(in Chinese). doi: 10.3969/j.issn.1002-3550.2011.09.031
    [8] 胡晓曼, 李亚南. C80高石粉含量机制砂高性能混凝土试验研究[J]. 混凝土与水泥制品, 2017(3):27-30. doi: 10.3969/j.issn.1000-4637.2017.03.007

    HU Xiaoman, LI Ya'nan. Experimental research on C80 high-stone-powder manufactured sand-high performance concrete[J]. China Concrete and Cement Products,2017(3):27-30(in Chinese). doi: 10.3969/j.issn.1000-4637.2017.03.007
    [9] 张坤, 管民生, 杜宏彪. C100高强机制砂混凝土的制备及其性能研究[J]. 混凝土, 2018(4):134-136, 140. doi: 10.3969/j.issn.1002-3550.2018.04.033

    ZHANG Kun, GUAN Minsheng, DU Hongbiao. Preparation and performance of C100 high strength concrete using manufactured sand[J]. Concrete,2018(4):134-136, 140(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.04.033
    [10] KLEE H. Cement industry energy and CO2 performance “getting the numbers right”[R]. Washington: WBCSD-CSI, 2009.
    [11] YAHIA A, TANIMURA M, SHIMOYAMA Y. Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio[J]. Cement and Concrete Research,2005,35:532-539. doi: 10.1016/j.cemconres.2004.05.008
    [12] LI L G, KWAN A K H. Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete[J]. Cement and Concrete Composites,2015,60:17-24. doi: 10.1016/j.cemconcomp.2015.02.006
    [13] CHEN J J, KWAN A K H, JIANG Y. Adding limestone fines as cement paste replacement to reduce water permeability and sorptivity of concrete[J]. Construction and Building Materials,2014,56:87-93. doi: 10.1016/j.conbuildmat.2014.01.066
    [14] ZHANG Z Q, WANG Q, CHEN H H. Properties of high-volume limestone powder concrete under standard curing and stem-curing conditions[J]. Powder Technology,2016,301:16-25. doi: 10.1016/j.powtec.2016.05.054
    [15] 何智海, 钱春香, 刘运华, 等. 石灰石粉和粉煤灰对混凝土抗冻融性能的影响[J]. 沈阳工业大学学报, 2011, 33(5):576-581.

    HE Zhihai, QIAN Chunxiang, LIU Yunhua, et al. Influence of limestone powder and fly ash on freezing –thawing resistance of concrete[J]. Journal of Shenyang University of Technology,2011,33(5):576-581(in Chinese).
    [16] 史才军, 王德辉, 贾煌飞, 等. 石灰石粉在水泥基材料中的作用及对其耐久性的影响[J]. 硅酸盐学报, 2017, 45(11):1582-1593.

    SHI Caijun, WANG Dehui, JIA Huangfei, et al. Role of limestone powder and Its effect on durability of cement-based materials[J]. Journal of the Chinese Ceramic Society,2017,45(11):1582-1593(in Chinese).
    [17] 陈飚, 王稷良, 杨玉辉, 等. 石粉含量对C80机制砂混凝土性能的影响[J]. 武汉理工大学学报, 2007(8):41-43.

    CHEN Biao, WANG Jiliang, YANG Yuhui, et al. Effects of stone-dust on resistance to chlorine ion permeating and volume stability of C80 manufactured sand concrete[J]. Journal of Wuhan University of Technology,2007(8):41-43(in Chinese).
    [18] 余尚和, 周孝军, 范碧琨, 等. 石粉含量对机制砂混凝土抗裂性能的影响[J]. 山西建筑, 2018, 44(23):100-102. doi: 10.3969/j.issn.1009-6825.2018.23.059

    YU Shanghe, ZHOU Xiaojun, FAN Bikun, et al. Effect of stone powder content on crack resistance of machined sand concrete[J]. Shanxi Architecture,2018,44(23):100-102(in Chinese). doi: 10.3969/j.issn.1009-6825.2018.23.059
    [19] LI H J, HUANG F L, CHENG G Z, et al. Effect of granite dust on mechanical and some durability properties of manufactured sand concrete[J]. Construction and Building Materials,2016,109:41-46. doi: 10.1016/j.conbuildmat.2016.01.034
    [20] 卞立波, 陶志. 不同吸附性粉体对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2):1246-1249.

    BIAN Libo, TAO Zhi. Influence of different adsorptive powders on concrete performance[J]. Materials Reports,2020,34(Z2):1246-1249(in Chinese).
    [21] 董超, 冯晨, 杨进波, 等. 机制砂质量指标及对混凝土性能的影响分析[J]. 混凝土与水泥制品, 2019(11):21-24.

    DONG Chao, FENG Chen, YANG Jinbo, et al. Analysis of the quality index of manufactured sand and Its influence on concrete performance[J]. China Concrete and Cement Products,2019(11):21-24(in Chinese).
    [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 建设用砂: GB/T 14684—2011[S]. 北京: 中国标准出版社, 2011.

    General administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Sand for construction: GB/T 14684—2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [23] Council of Standards Australia. Aggregates and rock for engineering purposes-concrete aggregates: AS 2758.1—2014[S]. Homebush: Standards Australia, 2014.
    [24] 杨长辉, 王川, 吴芳. 水灰比对混凝土塑性收缩裂缝的影响[J]. 重庆建筑大学学报, 2003(2):77-81.

    YANG Changhui, WANG Chuan, WU Fang. Effects of water-cement ratio on plastic shrinkage cracking of concrete[J]. Journal of Chongqin Jianzhu University,2003(2):77-81(in Chinese).
    [25] 唐明, 傅柏权, 孙小巍. 组成材料对混凝土早期塑性开裂分形特征的影响[J]. 沈阳建筑大学学报(自然科学版), 2007(2):258-262.

    TANG Ming, FU Baiquan, SUN Xiaowei. Effect of material composition on the fractal characteristics of the plastic shrinkage cracking in concrete at early age[J]. Journal of Shenyang Jianzhu University(Natural Science),2007(2):258-262(in Chinese).
    [26] 丁庆军, 陈健. 降黏型减水剂的合成及其对高石粉机制砂混凝土性能的影响[J]. 混凝土, 2020(6):61-64. doi: 10.3969/j.issn.1002-3550.2020.06.014

    DING Qingjun, CHEN Jian. Study on viscosity water reducing agent and application of concrete with manufacture sand[J]. Concrete,2020(6):61-64(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.06.014
    [27] 陈志城, 阎培渝. 补偿收缩混凝土的自收缩特性[J]. 硅酸盐学报, 2010, 38(4):568-573.

    CHEN Zhicheng, YAN Peiyu. Autogenous shrinkage of shrinkage-compensating concrete[J]. Journal of the Chinese Ceramic Society,2010,38(4):568-573(in Chinese).
    [28] 左文强, 田倩, 冉千平, 等. 两种混凝土减缩剂的性能及其作用机理[J]. 建筑材料学报, 2016, 19(3):503-509. doi: 10.3969/j.issn.1007-9629.2016.03.015

    ZUO Wenqiang, TIAN Qian, RAN Qianping, et al. Properties of shrinkage reducing admixtures(SRA) in concrete and its mechanism[J]. Journal of Building Materials,2016,19(3):503-509(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.03.015
    [29] 吴林妹, 史才军, 张祖华, 等. 钢纤维对超高性能混凝土干燥收缩的影响[J]. 材料导报, 2017, 31(23):58-65. doi: 10.11896/j.issn.1005-023X.2017.023.007

    WU Linmei, SHI Caijun, ZHANG Zuhua, et al. Effects of steel fiber on drying shrinkage of ultra high performance concrete[J]. Materials Reports,2017,31(23):58-65(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.023.007
    [30] SHEN D J, WANG X D, CHENG D B, et al. Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age[J]. Construction and Building Materials,2016,106:512-522. doi: 10.1016/j.conbuildmat.2015.12.115
    [31] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [32] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [33] 李明, 徐文, 王康臣, 等. 高吸水树脂在水泥浆体硬化过程中的释水行为[J/OL]. 建筑材料学报: 1-10[2021-04-04]. http://kns.cnki.net/kcms/detail/31.1764.TU. 20210204.1429. 038. html.

    LI Ming, XU Wen, WANG Kangchen, et al. Desorption behavior of superabsorbent polymers in cement paste during harden process[J]. Journal of Building Materials, 1-10[2021-04-04]. http://kns.cnki.net/kcms/detail/31.1764.TU.20210204.1429.038.html(in Chinese).
    [34] 王发洲, 吴文选, 周宇飞, 等. 预湿轻集料与高吸水性树脂的内养护效果比较[J]. 武汉理工大学学报, 2010, 32(14):21-25. doi: 10.3963/j.issn.1671-4431.2010.14.005

    WANG Fazhou, WU Wenxuan, ZHOU Yufei, et al. Comparison of the internal curing effect of the pre-wetted lightweight aggregate and super-absorbent polymer[J]. Journal of Wuhan University of Technology,2010,32(14):21-25(in Chinese). doi: 10.3963/j.issn.1671-4431.2010.14.005
    [35] 耿飞, 钱春香, 樊建平. 纤维和膨胀剂对混凝土收缩性能的影响[J]. 混凝土与水泥制品, 2003(5):33-35. doi: 10.3969/j.issn.1000-4637.2003.05.012

    GENG Fei, QIAN Chunxiang, FAN Jianping. Influence of fiber and expansion agent on shrinkage performance of concrete[J]. China Concrete and Cement Products,2003(5):33-35(in Chinese). doi: 10.3969/j.issn.1000-4637.2003.05.012
    [36] 朱卫东, 赵青林, 陈明辉, 等. 减缩剂在高性能混凝土中的应用研究[J]. 混凝土, 2008(12):51-53. doi: 10.3969/j.issn.1002-3550.2008.12.017

    ZHU Weidong, ZHAO Qinglin, CHEN Minghui. et al. Application of shrinkage reducing agent in high performance concrete[J]. Concrete,2008(12):51-53(in Chinese). doi: 10.3969/j.issn.1002-3550.2008.12.017
    [37] ESPINOZA-HIJAZIN G, LOPEZ M. Extending internal curing to concrete mixtures with W/C higher than 0.42[J]. Construction and Building Materials,2011,25:1236-1242. doi: 10.1016/j.conbuildmat.2010.09.031
    [38] 蔡维栋, 祝文凯, 樊立龙, 等. 石粉含量、含气量对C50机制砂海工混凝土性能的影响[J]. 铁道建筑技术, 2016(3):111-115. doi: 10.3969/j.issn.1009-4539.2016.03.028

    CAI Weidong, ZHU Wenkai, FAN Lilong, et al. Effects of micro-fines and gas content on performance of C50 manufactured-sand marine concrete[J]. Railway Construction Technology,2016(3):111-115(in Chinese). doi: 10.3969/j.issn.1009-4539.2016.03.028
    [39] 魏定邦, 李晓民, 王起才, 等. 高吸水树脂对机制砂混凝土收缩性能和强度的影响研究[J]. 兰州交通大学学报, 2020, 39(3):19-24. doi: 10.3969/j.issn.1001-4373.2020.03.004

    WEI Dingbang, LI Xiaomin, WANG Qicai, et al. Study on shrink performance and strength of manufactured sand concrete with super absorbent polymer[J]. Journal of Lanzhou Jiaotong University,2020,39(3):19-24(in Chinese). doi: 10.3969/j.issn.1001-4373.2020.03.004
    [40] 邓宗才, 连怡红, 赵连志. 膨胀剂、减缩剂对超高性能混凝土自收缩性能的影响[J]. 北京工业大学学报, 2021, 47(1):61-69.

    DENG Zongcai, LIAN Yihong, ZHAO Lianzhi. Influence of expansion agent and shrinkage reducing agent on autogenous shrinkage of UHPC[J]. Journal of Beijing University of Technology,2021,47(1):61-69(in Chinese).
    [41] 任慧韬, 郭磊. 减缩剂掺加对混凝土性能的影响[J]. 大连理工大学学报, 2013, 53(3):397-402.

    REN Huitao, GUO Lei. Effect of addition of shrinkage reducing admixture on properties of concrete[J]. Journal of Dalian University of Technology,2013,53(3):397-402(in Chinese).
    [42] 王萧萧, 赵恒, 谭鑫磊, 等. 天然浮石混凝土力学性能与微观结构研究[J]. 混凝土, 2019(2):61-64.

    WANG Xiaoxiao, ZHAO Heng, TAN Xinlei, et al. Study on mechanical properties and microstructure of natural pumice concrete[J]. Concrete,2019(2):61-64(in Chinese).
    [43] 杨正宏, 高双双, 于龙, 等. 养护温度对陶粒内水分向水泥浆体中迁移行为的影响[J]. 建筑材料学报, 2020, 23(1):138-144. doi: 10.3969/j.issn.1007-9629.2020.01.021

    YANG Zhenghong, GAO Shuangshuang, YU Long, et al. Effect of curing temperature on migration of water from ceramsite to cement paste[J]. Journal of Building Materials,2020,23(1):138-144(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.01.021
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  898
  • HTML全文浏览量:  285
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 录用日期:  2021-04-19
  • 网络出版日期:  2021-05-06
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回