留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮杂酞菁钴光电催化降解水环境中聚丙烯酰胺

王德军 李慧 姜锡仁 赵朝成 赵玉慧

王德军, 李慧, 姜锡仁, 等. 氮杂酞菁钴光电催化降解水环境中聚丙烯酰胺[J]. 复合材料学报, 2020, 37(0): 1-12
引用本文: 王德军, 李慧, 姜锡仁, 等. 氮杂酞菁钴光电催化降解水环境中聚丙烯酰胺[J]. 复合材料学报, 2020, 37(0): 1-12
Dejun WANG, Hui LI, Xiren JIANG, Chaocheng ZHAO, Yuhui ZHAO. Photoelectrocatalytic degradation of polyacrylamide in water by cobalt azaphthalocyanine[J]. Acta Materiae Compositae Sinica.
Citation: Dejun WANG, Hui LI, Xiren JIANG, Chaocheng ZHAO, Yuhui ZHAO. Photoelectrocatalytic degradation of polyacrylamide in water by cobalt azaphthalocyanine[J]. Acta Materiae Compositae Sinica.

氮杂酞菁钴光电催化降解水环境中聚丙烯酰胺

基金项目: 青岛市博士后应用研究项目
详细信息
    通讯作者:

    姜锡仁,本科,研究员,研究方向为海洋化学  E-mail:412689687@qq.com

  • 中图分类号: TB332

Photoelectrocatalytic degradation of polyacrylamide in water by cobalt azaphthalocyanine

  • 摘要: 针对水环境中聚丙烯酰胺(HPAM)难以被快速去除的问题,以导电炭黑(CB)为载体,制备了负载型氮杂酞菁钴(NCoPc/CB)和甲基取代氮杂酞菁钴(MeNCoPc/CB),并对其光电催化降解HPAM性能进行了研究。搭建分体式光电协同催化体系,选取50 mg/LHPAM水溶液为目标污染物,以Na.*?>=>2SO.*?>=>4为电解质,对氮杂酞菁钴的理化性质及光电协同催化工艺降解高分子聚合物的性能进行了考察。结果证实,光电协同催化工艺对HPAM去除率不但优于单独光催化和单独电催化工艺,更优于两者的代数和,这说明光电联合体系中产生了协同增强效应。其中又以MeNCoPc/CB效果最佳,污染物去除率达到76.07%,溶液黏度由8.33 mPa·s降至1.81 mPa·s。对协同工艺进行反应动力学分析,证实此过程符合准一级反应动力学,其反应速率常数分别是光催化的6.03倍,电催化的3.97倍。电子自旋共振技术(ESR)证实反应体系内主要活性物质为·OH和O.*?>=>2·
  • 图  1  甲基取代八氮杂金属酞菁(a)和叶绿素A(b)的分子结构图

    Figure  1.  Structures of nitrogen-doped methyl-substituted phthalocyanine and chlorophyll A

    图  2  光电联合实验装置

    1 DC stabilized power supply;2 Darkroom;3 Reactor;4 Stainless steel cathode;5 Magnetic stirrers;6 Titanium anode;7 Xenon lamp;8 Peristaltic pump;9 Circulating cooling water

    Figure  2.  Photoelectric experimental device

    图  3  氮杂酞菁钴(a)和甲基取代氮杂酞菁钴(b)的紫外-可见光谱

    Figure  3.  UV-visspectrum of NCoPc(a) and MeNCoPc(b)

    图  4  氮杂酞菁钴(a)和甲基取代氮杂酞菁钴(b)负载前后的XRD谱

    Figure  4.  XRD spectra of NCoPc(a) and MeNCoPc(b) before and after loaded

    图  5  氮杂酞菁钴和甲基取代氮杂酞菁钴负载前后的微观结构及能谱图

    Figure  5.  SEM and EDAX of NCoPc and MeNCoPc before and after loaded

    6  不同催化剂光催化、电催化及光电协同催化降解聚丙烯酰胺效果比较

    6.  Comparison of photocatalytic, electrocatalytic and photocatalytic degradation of HPAM by different catalysts ([Na.*?>=>2SO.*?>=>4]=0.1 mol/L,c.*?>=>0=50 mg/L, U=40 V, m.*?>=>催化剂=0.3 g/L)

    图  7  三种催化工艺降解HPAM动力学分析

    Figure  7.  Kinetic analysis of three catalytic processes for the degradation of HPAM (MeNCoPc/CB as catalyst ,m.*?>=>电解质=0.1 mol/L,c.*?>=>0=50 mg/L,U=40 v,m.*?>=>催化剂=0.3 g/L)

    图  8  光电协同催化降解HPAM工艺体系内自由基的ESR检测谱图

    Figure  8.  ESR detection spectra of radicals in photoelectrocatalytic process for the degradation of HPAM

    图  9  炭黑负载MeNCoPc光电协同催化降解聚丙烯酰胺机理示意图

    Figure  9.  Catalytic degradation of HPAM mechanism by photoelectrocatalytic degradation of MeNCoPc/CB

    表  1  三种催化工艺降解HPAM动力学反应速率常数

    Table  1.   Kinetics reaction rate constants of three catalytic processes for the degradation of HPAM

    NO.Voltage/VNa.*?>=>2SO.*?>=>4/(mol/L)Reaction rate/min−1Correlation coefficient R2Process
    1 0.1 3.98×10-3 0.9789 Photocatalysis
    2 40 0.1 5.05×10-3 0.9614 Electrocatalysis
    3 40 0.1 2.4×10-2 0.9771 Photoelectrocatalysis
    下载: 导出CSV

    表  2  不同反应阶段HPAM降解水样成分分析

    Table  2.   Analysis of components of HPAM solution sample degradated in different reaction period

    NO.Water samples after
    40 min of reaction
    Water samples after
    80 min of reaction
    Water samples after
    120 min of reaction
    CompositionContent/%CompositionContent/%CompositionContent/%
    1 Water 99.625 Water 99.611 Water 99.562
    2 HPAM 0.035 HPAM 0.008 HPAM 0.002
    3 AM 0.02 AM 0.009 AM 0.003
    4 Acrylic acid 0.04 Acrylic acid 0.055 Acrylic acid 0.002
    5 NO.*?>=>3 0.04 NO.*?>=>3 0.063 NO.*?>=>3 0.128
    6 Na.*?>=>2SO.*?>=>4 0.23 Na.*?>=>2SO.*?>=>4 0.25 2-(2-Hydroxypropoxy)-1-propanol 0.002
    7 DMF 0.01 DMF 0.004 2,4,7,9-Tetramethyl-5-decyne-4,7-diol 0.009
    8 Myristicin 0.002
    9 Na.*?>=>2SO.*?>=>4 0.29
    下载: 导出CSV
  • [1] BAO M, CHEN Q, LI Y, et al. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field[J]. Journal of Hazardous Materials,2010,184(1-3):105-110. doi:  10.1016/j.jhazmat.2010.08.011
    [2] MA F, WEI L, WANG L, et al. Isolation and identification of the sulphate-reducing bacteria strain H1 and its function for hydrolysed polyacrylamide degradation[J]. International Journal of Biotechnology,2008,10(1):55-63. doi:  10.1504/IJBT.2008.017979
    [3] RONG X, QIU F, ZHANG C, et al. Preparation of Ag-AgBr/TiO.*?>=>2-graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide[J]. Journal of Alloys & Compounds,2015,639:153-161.
    [4] ZHANG H, ZHONG Z, XING W. Application of ceramic membranes in the treatment of oilfield-produced water: Effects of polyacrylamide and inorganic salts[J]. Desalination,2013,309:84-90. doi:  10.1016/j.desal.2012.09.012
    [5] LIU T, HONG Y, CHEN Q. Heterogeneous photo-fenton degradation of polyacrylamid in aqueous solution over Fe(Ⅲ)-SiO.*?>=>2catalyst[J]. Journal of Hazardous Materials,2009,162(2-3):860-865. doi:  10.1016/j.jhazmat.2008.05.110
    [6] WEN Q, CHEN Z, ZHAO Y, et al. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil[J]. Journal of Hazardous Materials,2010,175(1-3):955-959. doi:  10.1016/j.jhazmat.2009.10.102
    [7] WEN Q, CHEN Z, ZHAO Y, et al. Performance and Microbial Characteristics of BioaugmentationSystems for Polyacrylamide Degradation[J]. Journal of Polymers & the Environment,2011,19(1):125-132.
    [8] DONZELLO M P, ERCOLANI C, NOVAKOVA V, et al. Tetrapyrazino-porphyrazines and their metal derivatives. Part I: Synthesis and basic structural information[J]. Coordination Chemistry Reviews,2016,309:107-179. doi:  10.1016/j.ccr.2015.09.006
    [9] MALEKI A, REZAYAN A H. One-Pot Synthesis of Metallopyrazinoporphyrazines Using 2, 3-Diaminomaleonitrile and 1, 2-Dicarbonyl Compounds Accelerated by Microwave Irradiation[J]. Organic Chemistry International,2014,2014(6):1-5.
    [10] LINSTEAD R P, NOBLE E G, WRIGHT J M. 187. Phthalocyanines. Part IX. Derivatives of thiophen, thionaphthen, pyridine, and pyrazine, and a note on the nomenclature[J]. Journal of the Chemical Society,1937:911-921. doi:  10.1039/jr9370000911
    [11] MARIN M L, SANTOS-JUANES L, ARQUES A, et al. Organic photocatalysts for the oxidation of pollutants and model compounds[J]. Chemical Reviews,2012,112(3):1710-1750. doi:  10.1021/cr2000543
    [12] LIU J, ZHAO Y, ZHANG F, et al. Dimerization of Metal-free Sulfonated Phthalocyanines in Aqueous Methanol Solution[J]. Acta Physico-chimica Sinica,1996,12(2):163-167. doi:  10.3866/PKU.WHXB19960215
    [13] 郭黎平, 姜秀娥, 杜锡光, 等. 双核磺化酞菁 钴在混合溶液中聚集现象的光谱和电化学研究[J]. 光谱学与光谱分析, 2003(5):1031-1034.

    GUO Liping, JIANG Xiuer, DU Xiguang, et al. Spectroscopy and Electrochemistry Studies on the Aggregation of Binuclear Cobalt Phthalocyaninehexasulfonate in Mixed Solutions[J]. Spectroscopy and Spectral Analysis,2003(5):1031-1034(in Chinese).
    [14] 吴星, 袁诗海. 四磺化酞菁钴在水溶液中二 聚作用力的研究[J]. 光谱学与光谱分析, 1999(1):113-115.

    WU Xing, YUAN Shihai. Study on the action force of dimerization of cobalt tetrasulfonate phthalocyanine in aqueous solution[J]. Spectroscopy and Spectral Analysis,1999(1):113-115(in Chinese).
    [15] ILIEV V, ALEXIEV V, BILYARSKA L. Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds[J]. Journal of Molecular Catalysis A: Chemical,1999,137:15-22. doi:  10.1016/S1381-1169(98)00069-7
    [16] 沈永嘉. 酞菁的合成与应用[M]. 北京: 化学 工业出版社, 2000: 35-38.

    SHEN Yongjia. The Synthesis and application of phthalocyanine[M]. Beijing: Chemical industry press, 2000: 35-38. (in Chinese).
    [17] 许越. 催化剂设计与制备工艺[M]. 北京: 化 学工业出版社, 2003: 121-122.

    XU Yue. Catalyst design and preparation process[M]. Beijing: Chemical industry press, 2003: 121-122. (in Chinese).
    [18] 赵修太, 王增宝, 邱广敏, 等. 部分水解聚丙 烯酰胺水溶液初始黏度的影响因素[J]. 石油与天然气化工, 2009(3):231-234.

    ZHAO Xiutai, WANG Zengbao, QIU Guangmin, et al. Study on influence factors of the initial viscosity of HPAM solution[J]. Chemical engineering of oil and gas,2009(3):231-234(in Chinese).
    [19] 张峰. 光催化氧化联合工艺处理不同污染物 的研究[D]. 中国地质大学(北京), 2011: 36-42.

    ZHANG Feng. Study on pollutants degradation by combined process of photocatalytic oxidation technique[D]. China University of Geosciences(Beijing), 2011: 36-42.
    [20] 张峰, 李文奇, 冯传平, 等. 光催化电化学联 合降解水中苯酚的研究[J]. 环境工程学报, 2011(10):2161-2166.

    ZHANG Feng, LI Wenqi, FENG Chuanping, et al. Study on synergetic degradation of phenol by independent electrochemical and photocatalytic processes[J]. Chinese Journal of Environmental Engineering,2011(10):2161-2166(in Chinese).
    [21] 胡春, 王怡中, 汤鸿霄. TiO.*?>=>2光催化氧化苯酚 动力学研究[J]. 环境科学, 1997(4):2-5.

    HU Chun, WANG Yizhong, TANG Hongxiao. Kinetic study on photocatalytic oxidation of phenol by TiO.*?>=>2[J]. Environmental Science,1997(4):2-5(in Chinese).
    [22] 刘咏, 赵仕林, 李启彬, 等. 苯酚在氯离子体 系中的电化学氧化研究[J]. 环境科学与技术, 2006(11):21-22.

    LIU Yong, ZHAO Shilin, LI Qibin, et al. Electrochemical oxidation of phenol in chloride-ion system[J]. Environmental Science & Technology,2006(11):21-22(in Chinese).
    [23] 陈颖, 崔军明, 王宝辉, 等. 光催化氧化降解 水中聚丙烯酰胺的可行性研究[J]. 大庆石油学院学报, 2001(2):82-83.

    CHEN Ying, CUI Junming, WANG Baohui, et al. Feasibility of photocatalytic oxidation of degrading polyacrylamide in water[J]. Journal of Daqing Petroleum Institute,2001(2):82-83(in Chinese).
    [24] RONG X, QIU F, ZHANG C, et al. Preparation of Ag-AgBr/TiO.*?>=>2-graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide[J]. Journal of Alloys and Compounds,2015,639:153-161. doi:  10.1016/j.jallcom.2015.03.163
    [25] 陈颖, 王宝辉, 张海燕, 等. 纳米级TiO.*?>=>2光催 化氧化聚丙烯酰胺[J]. 催化学报, 1999(3):309-312.

    CHEN Ying, WANG Baohui, ZHANG Haiyan, et al. Photocatalytic oxidation of polyacrylamide in water over nanometer TiO.*?>=>2 particles[J]. Chinese Journal of Catalysis,1999(3):309-312(in Chinese).
    [26] COMNINELLIS C, PULGARIN C. Anodic oxidation of phenol for waste water treatment[J]. Journal of Applied Electrochemistry,1991,21(8):703-708. doi:  10.1007/BF01034049
    [27] COMNINELLIS C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochimica Acta,1994,39(11-12):1857-1862. doi:  10.1016/0013-4686(94)85175-1
    [28] 曲久辉, 刘会娟. 水处理电化学原理与技术[M]. 北京: 科学出版社, 2007: 21-24.

    QU Jiuhui, LIU Huijuan. Principles and techniques of electrochemistry in water treatment[M]. Beijing: Science Press, 2007: 21-24. (in Chinese).
    [29] RAJKUMAR D, PALANIVELU K. Electrochemical treatment of industrial wastewater[J]. Journal of Hazardous Materials,2004,113(1-3):123-129. doi:  10.1016/j.jhazmat.2004.05.039
    [30] SANJUÁN A, ALVARO M, AGUIRRE G, et al. Intrazeolite Photochemistry. 21.2, 4, 6-Triphenylpyrylium Encapsulated inside Zeolite Y Supercages as Heterogeneous Photocatalyst for the Generation of Hydroxyl Radical[J]. Journal of the American Chemical Society,1998,120(29):7351-7352. doi:  10.1021/ja980121n
    [31] SANJUÁN A, AGUIRRE G, ALVARO M, et al. 2, 4, 6-Triphenylpyrylium ion encapsulated within Y zeolite as photocatalyst for the degradation of methyl parathion.[J]. Water Research,2000,34(1):320-326. doi:  10.1016/S0043-1354(99)00103-7
    [32] SANJUÁN A, AGUIRRE G, ALVARO M, et al. 2, 4, 6-Triphenylpyrylium ion encapsulated in Y zeolite as photocatalyst. A co-operative contribution of the zeolite host to the photodegradation of 4-chlorophenoxyacetic acid using solar light[J]. Applied Catalysis B: Environmental,1998,15(3-4):247-257. doi:  10.1016/S0926-3373(97)00052-0
    [33] HOFFMANN N. Photochemical reactions as key steps in organic synthesis[J]. Chemical reviews,2008,108(3):1052-1103. doi:  10.1021/cr0680336
    [34] JACKSON C V, MICKELSON J K, STRINGER K, et al. Electrolysis-induced myocardial dysfunction: A novel method for the study of free radical mediated tissue injury[J]. Journal of Pharmacological Methods,1986,15(4):305-320. doi:  10.1016/0160-5402(86)90010-0
    [35] LI D, GE S, HUANG J, et al. Photocatalytic chromogenic identification of chlorophenol pollutants by manganese phthalocyanine under sunlight irradiation[J]. Separation and Purification Technology,2014,125(14):216- 222.
    [36] 周抗寒, 周定. 复极性固定床电解槽内电极 电位的分布[J]. 环境化学, 1994(4):318-322.

    ZHOU Kanghan, ZHOU Ding. Potential distribution in a bipolar packed bed electrolyser[J]. Environmental Chemistry,1994(4):318-322(in Chinese).
    [37] 张青红. 纳米氧化钛光催化材料及应用[M]. 化学工业出版社, 2002: 125-129.

    ZHANG Qinghong. Nanometer titanium oxide and its application[M]. Beijing: Chemical industry press, 2002: 125-129. (in Chinese).
  • [1] 魏成成, 孙晓刚, 梁国东, 黄雅盼, 胡浩, 徐宇浩.  Si@环化聚丙烯腈/多壁碳纳米管负极复合材料的制备及电化学性能, 复合材料学报. 2020, 37(6): 1450-1457. doi: 10.13801/j.cnki.fhclxb.20191031.002
    [2] 沈海峰, 邵胜栋, 王子路, 郭正虹.  聚乙烯亚胺修饰富勒烯的制备及其对聚丙烯热氧稳定性的影响, 复合材料学报. 2020, 37(11): 1-6. doi: 10.13801/j.cnki.fhclxb.20200421.004
    [3] 牟明明, 袁光明, 陈世尧.  纳米TiO2对木纤维/聚丙烯复合材料抗紫外老化性能的影响, 复合材料学报. 2020, 37(6): 1268-1277. doi: 10.13801/j.cnki.fhclxb.20190929.004
    [4] 荆蓉, 张锐涛, 孟雨辰, 王彦辉, 张兴刚, 赵玉, 张用兵.  连续玻纤增强聚丙烯热塑性复合材料拉挤成型中的工艺参数, 复合材料学报. 2020, 37(): 1-8.
    [5] 杨春风, 李勰, 张颖鑫, 王婷婷, 王会.  原位聚合法制备聚丙烯酸修饰的ZnS量子点, 复合材料学报. 2020, 37(9): 2258-2264. doi: 10.13801/j.cnki.fhclxb.20200103.003
    [6] 张广泰, 曹银龙, 李瑞祥, 张路杨, 陈勇.  聚丙烯-钢纤维/混凝土柱大偏心受压承载力计算, 复合材料学报. 2020, 37(9): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20200201.001
    [7] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [8] 孔祥清, 何文昌, 邢丽丽, 王学志.  钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响, 复合材料学报. 2020, 37(7): 1763-1773. doi: 10.13801/j.cnki.fhclxb.20191106.001
    [9] 钱晓明, 魏楚, 钱幺, 刘永胜, 王立晶.  空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能, 复合材料学报. 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001
    [10] 张淑娟, 杨婕妤, 张翊青, 万正睿, 周立群, 王念贵.  Pd-Sn-Co纳米粒子修饰还原氧化石墨烯/CuBi2O4复合材料的制备及电催化性能, 复合材料学报. 2020, 37(6): 1442-1449. doi: 10.13801/j.cnki.fhclxb.20191219.003
    [11] 王娟, 张法明, 商彩云, 张彬.  石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能, 复合材料学报. 2020, 37(12): 1-12.
    [12] 涂言言, 赵子涵, 孙一强.  FeOOH-Ni(OH)2复合材料的制备及其电催化析氧性能, 复合材料学报. 2020, 37(8): 1944-1950. doi: 10.13801/j.cnki.fhclxb.20190618.001
    [13] 谢远江, 罗明洪, 夏克坚.  功能化石墨烯多层膜载金催化剂的制备及其对肼的电催化氧化, 复合材料学报. 2020, 37(7): 1695-1702. doi: 10.13801/j.cnki.fhclxb.20191209.001
    [14] 杜春艳, 宋佳豪, 谭诗杨, 阳露, 张卓, 余关龙.  石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能, 复合材料学报. 2020, 37(): 1-11.
    [15] 刘玲伟, 邹新全, 张鸿, 叶泳铭, 赵云鹤, 石军峰, 闫铭, 朱浩彤, 周炜东, 于跃.  三维网笼状聚N-羟甲基丙烯酰胺/聚乙二醇半互穿网络复合相变微球的制备及热性能, 复合材料学报. 2020, 37(): 1-9.
    [16] 宋萃, 戚明颖, 刘金芳, 祝茜.  Ag3PO4/羟基磷灰石复合光催化剂的制备及对亚甲基蓝的高效降解, 复合材料学报. 2020, 37(6): 1418-1425. doi: 10.13801/j.cnki.fhclxb.20200220.001
    [17] 佘小红, 杜娟, 朱雯莉.  高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能, 复合材料学报. 2020, 37(): 1-8.
    [18] 于翔, 董献辉, 桂久青, 张雪寅, 宋子豪, 李玥.  Ag对TiO2@Ag/聚偏氟乙烯复合薄膜性能的影响, 复合材料学报. 2020, 37(7): 1555-1561. doi: 10.13801/j.cnki.fhclxb.20191128.001
    [19] 梁艳莉, 马剑琪, 郭少波.  核壳型磁性纳米复合材料CoFe2O4@PDA@Pt的制备及催化性能, 复合材料学报. 2020, 37(): 1-8.
    [20] 薛艳华, 高明星, 袁飞龙, 李航天.  聚丙烯酰胺对石灰稳定土早期强度和破坏形式的影响, 复合材料学报. 2020, 37(): 1-9.
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-05
  • 录用日期:  2020-08-03
  • 网络出版日期:  2020-09-29

目录

    /

    返回文章
    返回