留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合层压板单螺栓连接的刚度建模

李玲 张东 王晶晶 史小辉 仝美娟

李玲, 张东, 王晶晶, 等. 复合层压板单螺栓连接的刚度建模[J]. 复合材料学报, 2021, 38(9): 2942-2952. doi: 10.13801/j.cnki.fhclxb.20210129.001
引用本文: 李玲, 张东, 王晶晶, 等. 复合层压板单螺栓连接的刚度建模[J]. 复合材料学报, 2021, 38(9): 2942-2952. doi: 10.13801/j.cnki.fhclxb.20210129.001
LI Ling, ZHANG Dong, WANG Jingjing, et al. Stiffness modeling of single bolt connection in composite laminate[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2942-2952. doi: 10.13801/j.cnki.fhclxb.20210129.001
Citation: LI Ling, ZHANG Dong, WANG Jingjing, et al. Stiffness modeling of single bolt connection in composite laminate[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2942-2952. doi: 10.13801/j.cnki.fhclxb.20210129.001

复合层压板单螺栓连接的刚度建模

doi: 10.13801/j.cnki.fhclxb.20210129.001
基金项目: 国家自然科学基金(51975449)
详细信息
    通讯作者:

    李玲,博士,教授,博士生导师,研究方向为机床动力学、接触力学和摩擦学 E-mail:lee_liling@163.com

  • 中图分类号: TH131.3;TB332

Stiffness modeling of single bolt connection in composite laminate

  • 摘要: 针对复合层压板单螺栓单搭接结构,提出一种更合理的四阶段刚度模型。该模型是在传统三阶段刚度分析模型的基础上,采用部分滑移理论对模型粘滞阶段的刚度进行了改进;同时考虑到层压板之间、垫片与层压板之间的异步滑动,增加了部分滑移阶段,给出新的刚度模型的理论分析过程和使用条件。为了验证改进模型的准确性,在ABAQUS中建立了对应的三维有限元模型,同时对比了层压板单独建模和均质建模的优缺点,表明单独建模更符合实际,更精确;最后通过分析螺栓孔间隙、扭矩、铺层厚度、宽径比、液态垫片及铺层角度对复合材料螺栓连接各阶段刚度的影响。结果表明:螺栓孔间隙会导致螺杆发生二次弯曲,从而降低其接头刚度;相对于宽径比的影响,铺层厚度对螺栓接头刚度的影响更显著;不同铺层角度对螺栓接头刚度的影响机制也不同。

     

  • 图  1  含间隙扭矩复合层压板螺栓连接四阶段刚度模型

    Figure  1.  Four-stage stiffness model of composite laminate bolted connection with clearance torque

    k1, k2, k3, k4—Stiffness of viscous stage, partial slip stage, intact slip stage, screw load transfer stage, respectively; δ1, δ2, δ3—Displacement at the end of the first three stages, respectively

    图  2  复合层压板螺栓连接粘滞阶段受力分析

    Figure  2.  Force analysis of bolted connection of composite laminates in viscous stage

    图  3  HTA/6367碳纤维/环氧树脂复合层压板螺栓连接结构几何参数

    Figure  3.  Geometric parameters of bolted connection structure of HTA/6367 carbon fiber/epoxy composite laminate

    图  4  HTA/6367碳纤维/环氧树脂复合层压板螺栓连接结构的有限元模型

    Figure  4.  Finite element model of HTA/6367 carbon fiber/epoxy composite laminate board bolt connection structure

    图  5  复合层压板螺栓连接接触对

    Figure  5.  Composite laminate bolted contact pair

    图  6  HTA/6367复合层压板螺栓连接结构分析模型和有限元模型对应载荷-位移曲线

    Figure  6.  Load-displacement curves of analysis model and finite element model for HTA/6367 composite laminate board bolt connection structure

    图  7  HTA/6367复合层压板单独建模与均质建模对比

    Figure  7.  Comparison of individual modeling and homogeneous modeling of HTA/6367 composite laminate

    图  8  HTA/6367复合层压板有限元载荷-位移提取

    Figure  8.  Finite element load-displacement extraction of HTA/6367 composite laminate

    图  9  间隙配合HTA/6367复合层压板螺栓连接接头载荷-位移曲线

    Figure  9.  Load-displacement curves of clearance fit HTA/6367 composite laminate board bolted joint

    图  10  不同预紧力作用下HTA/6367复合层压板螺栓连接接头载荷-位移曲线

    Figure  10.  Load-displacement curves of HTA/6367 composite laminate board bolted joint under different pre-tightening forces

    图  11  不同铺层厚度HTA/6367复合层压板螺栓连接接头载荷-位移曲线

    Figure  11.  Load-displacement curves of HTA/6367 composite laminate board bolted joints with different layer thickness

    图  12  宽径比作用下HTA/6367复合层压板螺栓连接接头载荷-位移曲线

    Figure  12.  Load-displacement curves of HTA/6367 composite laminate board bolted joints under the action of aspect ratio

    图  13  不同厚度垫片HTA/6367复合层压板孔周应力分布

    Figure  13.  Stress distribution around the hole of gaskets with different thickness for HTA/6367 composite laminate

    图  14  不同厚度垫片HTA/6367复合层压板螺栓接头载荷-位移曲线

    Figure  14.  Load-displacement curves of HTA/6367 composite laminate bolted joints with different washer thickness

    图  15  0 μm间隙量配合HTA/6367复合层压板螺栓孔各层的切向应力分布

    Figure  15.  0 μm clearance to match the tangential stress distribution of each layer of the bolt hole for HTA/6367 composite laminate

    图  16  不同铺层HTA/6367复合层压板螺栓连接载荷-位移曲线

    Figure  16.  Load-displacement curves of HTA/6367 composite laminate bolt connection of different layers

    表  1  HTA/6367复合材料单层板与均质层压板刚度性能

    Table  1.   Stiffness performance of HTA/6367 composite single-layer board and homogeneous laminate

    E11/GPaE22/GPaE33/GPaG12/GPaG13/GPaG23/GPaν12ν13ν23
    140 10 10 5.2 5.2 3.9 0.3 0.3 0.5
    Exx/GPa Eyy/GPa Ezz/GPa Gxy/GPa Gxz/GPa Gyz/GPa νxy νxz νyz
    54.25 54.25 12.59 20.72 4.55 4.55 0.309 0.332 0.332
    Notes: E—Modulus of elasticity; G—Modulus of shear; ν—Poisson’s ratio.
    下载: 导出CSV
  • [1] 寇剑锋, 徐绯. 螺栓连接层合板孔边挤压应力三维分布[J]. 复合材料学报, 2018, 35(12):132-139.

    KOU Jianfeng, XU Fei. Three-dimensional bearing stress distribution at bolt-hole in quasi-sotropic laminates[J]. Acta Materiae Compositae Sinica,2018,35(12):132-139(in Chinese).
    [2] 何柏灵, 葛东云, 莫与明, 等. T800碳纤维增强复合材料双剪单钉连接的拉伸试验及强度估算[J]. 复合材料学报, 2016, 33(7):1540-1552.

    HE B L, GE D Y, MO Y M, et al. Tensile tests and strength estimation for double-lap single-bolt joints in T800 carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1540-1552(in Chinese).
    [3] MCCARTHY M A, LAWLOR V P, STANLEY W F, et al. Bolt-hole clearance effects and strength criteria in single-bolt, single-lap, composite bolted joints[J]. Composites Science & Technology, 2002, 62(10): 1415-1431.
    [4] LAWLOR V P, MCCARTHY M A, STANLEY W F, et al. An experimental study of bolt-hole clearance effects in double-lap, multi-bolt composite joints[J]. Composite Structures,2005,71(2):176-190. doi: 10.1016/j.compstruct.2004.09.025
    [5] MCCARTHY M A, LAWLOR V P, STANLEY W F. An experimental study of bolt-hole clearance effects in single-lap, multi-bolt composite joints[J]. Journal of Composite Materials,2005,39(9):799-825. doi: 10.1177/0021998305048157
    [6] MCCARTHY M A, MCCARTHY C T, PA-DHI G S. A simple method for determining the effects of bolt-hole clearance on load distribution in single-column multi-bolt composite joints[J]. Composite Structures,2006,73:78-87. doi: 10.1016/j.compstruct.2005.01.028
    [7] LECOMTE J, BOIS C, WARGNIER H, et al. An analytical model for the prediction of load distribution in multi-bolt composite joints including hole-location errors[J]. Composites Structures, 2014, 117: 354-361.
    [8] TAHERI-BEHROOZ F, SHAMAEI KASHANI A R, HEFZABAD R N. Effects of material nonlinearity on load distribution in multi-bolt composite joins[J]. Composites Structures,2015,125:195-201. doi: 10.1016/j.compstruct.2015.01.047
    [9] LIU F, ZHANG J, ZHAO L, et al. An analytical joint stiffness model for load transer analysis in highly torqued multi-bolt composite joints with clearances[J]. Composites Structures, 2015, 131: 625–636.
    [10] IREMAN T. Three-dimensional stress analysis of bolted single-lap composite joints[J]. Composite Structures,1998,43(3):195-216. doi: 10.1016/S0263-8223(98)00103-2
    [11] MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part Ι-Model development and validation[J]. Composite Structures,2005,71(2):140-158. doi: 10.1016/j.compstruct.2004.09.024
    [12] MCCARTHY C T, MCCARTHY M A. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part II-Effects of bolt-hole clearance[J]. Composite Structures,2005,71(2):159-175. doi: 10.1016/j.compstruct.2004.09.023
    [13] MANDAL B, CHAKRABARTI A. A simple homogenization scheme for 3D finite element analysis of composite bolted joints[J]. Composite Structures, 2015, 120: 1-9.
    [14] PADHI G S, MCCARTHY M A, MCCARTHY C T, et al. A tool for designing composite bolted joints using three-dimensional finite element analysis[J]. Composites Part A: Applied Science & Manufacturing,2002,33(11):1573-1584.
    [15] MCCARTHY C T, MCCARTHY M A, LAWLOR V P. Progressive damage analysis of multi-bolt composite joints with variable bolt-hole clearances[J]. Composites Part B: Engineering,2005,36B(4):290-305.
    [16] TATE M B, ROSENFELD S J. Preliminary investigation of the loads carried by indivi-dual bolts in bolted joints[R]. NASA-TA-1051, 1946.
    [17] NELSON W D, BUNIN B L, HART-SMITH L J. Critical joints in large composite aircraft structure[R]. NASA Contractor Report 3710, 1983.
    [18] OLMEDO A, SANTIUSTE C, BARBERO E. An analytical model for the secondary bending prediction in single-lap composite bolted-joints[J]. Composite Structures,2014,111(5):354-361.
    [19] ZHAO Shiwei, XIANG Jinwu, LI Daochun, et al. An improved spring method for calcu-lating the load distribution in multi-bolt composite joints[J]. Composites Part B: Engineering,2017,117(15):1-8.
    [20] FRIBERG M. Fastener load distribution and interlaminar stresses in composite laminates[D]. Stockholm: Royal Institute of Technology, 2000.
    [21] GRAY P J, MCCARTGY C T. A global bolted joint model for finite element analysis of load distributions in multi-bolt composite joints[J]. Composites Part B: Engineering,2010,41(4):317-325. doi: 10.1016/j.compositesb.2010.03.001
    [22] MCCARTHY C T, GRAY P. An analytical model for the prediction of load distribution in highly torqued multi-bolt composite joints[J]. Composite Structures,2011,93(2):287-298. doi: 10.1016/j.compstruct.2010.09.017
    [23] 姜晓伟, 曾建江, 曾昭炜, 等. 配合方式对复合材料单钉单剪螺栓连接接头刚度的影响及其机制[J]. 复合材料学报, 2016, 33(3):589-596.

    JIANG X W, ZENG J J, ZENG Z W, et al. Infiuence and mechanism of fitting mode on stiffness of single-bolt, single-lap composite bolted joint[J]. Acta Materiae Compositae Sinica,2016,33(3):589-596(in Chinese).
    [24] MCCARTHY C T. Experiences with modeling friction in composite bolted joints[J]. Journal of Composite Materials,2005,39(21):1881-1908. doi: 10.1177/0021998305051805
    [25] 刘同, 许希武, 林智育. 复合材料厚板多钉连接[J]. 材料科学与工程学报, 2019, 37(5):768-778.

    LIU Tong, XU Xiwu, LIN Zhiyu. Research on multi-bolt composite laminate joint strength[J]. Journal of Materials Science and Engineering,2019,37(5):768-778(in Chinese).
    [26] 岳烜德, 安鲁陵, 云一珅, 等. 液体垫片对复合材料单搭接螺栓接头力学性能的影响[J]. 复合材料学报, 2018, 35(1):50-60.

    YUE Xuande, AN Luling, YUN Yishen, et al. Infiuence of the liquid shim on the mechanical properties of single-lap composite bolted joint[J]. Acta Materiae Compositae Sinica,2018,35(1):50-60(in Chinese).
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  380
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 录用日期:  2021-01-13
  • 网络出版日期:  2021-01-29
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回