留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷氮复合阻燃环氧树脂的制备及其阻燃性能

李亮 蔡再生

李亮, 蔡再生. 磷氮复合阻燃环氧树脂的制备及其阻燃性能[J]. 复合材料学报, 2020, 37(11): 1-11
引用本文: 李亮, 蔡再生. 磷氮复合阻燃环氧树脂的制备及其阻燃性能[J]. 复合材料学报, 2020, 37(11): 1-11
Liang LI, Zaisheng CAI. Preparation and performance of a flame-retardant epoxy resins composite containing phosphorus and nitrogen[J]. Acta Materiae Compositae Sinica.
Citation: Liang LI, Zaisheng CAI. Preparation and performance of a flame-retardant epoxy resins composite containing phosphorus and nitrogen[J]. Acta Materiae Compositae Sinica.

磷氮复合阻燃环氧树脂的制备及其阻燃性能

基金项目: 江苏省高等学校自然科学研究计划面上项目(19KJD430009);盐城工业职业技术学院自然科学项目(ygy1702)
详细信息
    通讯作者:

    蔡再生,博士,教授,博士生导师,研究方向为功能高分子材料 E-mail:zshcai@dhu.edu.cn

  • 中图分类号: TB332

Preparation and performance of a flame-retardant epoxy resins composite containing phosphorus and nitrogen

  • 摘要: 为改善环氧树脂的阻燃性,成功合成了一种含苯砜基和磷杂菲杂环的阻燃添加剂(FRASP)。采用傅里叶变换衰减全反射红外光谱法(ATR-FTIR)、核磁共振(NMR)和元素分析等手段对FRASP的化学结构进行了表征。FRASP添加到双酚A型环氧树脂(DGEBA)中,经4, 4'-二氨基二苯甲烷(DDM)固化后制备出了复合树脂(DGEBA-FRASP)。FRASP质量分数为9wt%的DGEBA -FRASP复合树脂的LOI值达到35.9%,并通过UL94的V-0等级测试。残炭的形貌和激光拉曼光谱(LRS)分析显示,FRASP促进膨胀、致密、高石墨化程度的多孔炭层的生成。热重分析表明,FRASP改变了DGEBA-FRASP复合树脂的热降解过程,促进了复合树脂提前热分解,最大失重率降低,并提高了残炭量。热裂解分析显示,裂解过程中产生了含磷分子和不可燃气体,可稀释氧气并抑制燃烧过程中自由基链式反应。FRASP分子中P、N和S的协同作用,改善了DGEBA-FRASP复合树脂的阻燃性能。
  • 图  1  含苯砜基和磷杂菲杂环的阻燃添加剂(FRASP)的合成路线

    Figure  1.  Synthetic routes of the flame retardant additive with sulfone and phosphaphenanthrene groups (FRASP)

    图  2  对苯二甲醛、DDS、DP和FRASP的ATR红外光谱

    Figure  2.  ATR Spectra of 1,4-Phthalaldehyde, DDS, DP and FRASP

    图  3  FRASP的核磁谱图

    Figure  3.  31P-NMR and 1H-NMR of FRASP

    图  4  DGEBA和不同FRASP质量分数DGEBA-FRASP树脂在UL94测试时的电子图片

    Figure  4.  Digital photographs of DGEBA and DGEBA-FRASP composite resins with different mass fraction of FRASP in UL94 test

    图  5  DGEBA和不同FRASP质量分数DGEBA-FRASP复合树脂残炭SEM图像

    Figure  5.  SEM images of char residue for DGEBA and DGEBA-FRASP composite resins with different mass fraction of FRASP

    图  6  氮气氛围中DGEBA和不同FRASP质量分数DGEBA-FRASP复合树脂热降解前(a)、残炭外部(b)和残炭内部(c)的电子图片

    Figure  6.  Digital photographs of DGEBA and DGEBA-FRASP composite resins with different mass fraction of FRASP (a,exterior (b) and interior (c) of char residue after degradation in N2

    图  7  DGEBA和不同FRASP质量分数DGEBA-FRASP复合树脂残碳的拉曼光谱

    Figure  7.  Raman spectra for char residue of neat DGEBA and DGEBA-FRASP composite resins with different mass fraction of FRASP

    图  8  DGEBA和不同FRASP质量分数DGEBA-FRASP复合树脂空气下TG和DTG曲线

    Figure  8.  TG and DTG curves of DGEBA and DGEBA-FRASP composite resins with different mass fraction of FRASP under air atmosphere

    图  9  DGEBA和不同FRASP质量分数DGEBA-FRASP复合树脂氮气下TG和DTG曲线

    Figure  9.  TG and DTG curves of DGEBA and DGEBA-FRASP composite resins with different mass fraction of FRASP under nitrogen atmosphere.

    图  10  FRASP的热裂解图谱

    Figure  10.  Pyrograms of FRASP

    图  11  DGEBA和DGEBA-FRASP9复合树脂的热裂解图谱

    Figure  11.  Pyrograms of neat DGEBA and DGEBA-FRASP9 composite resins

    表  1  DGEBA-FRASP复合树脂中DEEBA、DDM和FRASP的组成及FRASP的质量分数

    Table  1.   Formulas of DGEBA-FRASP composite reins and the mass fraction of FRASP

    SamplesComposition/gMFRASP /wt%
    DGEBADDMFRASP
    Neat DGEBA1002200
    DGEBA-FRASP3100223.773
    DGEBA-FRASP6100227.796
    DGEBA-FRASP91002212.079
    Notes: DGEBA―Diglycidyl ether of bisphenol A; DDM―4,4-diaminodiphenyl methane; FRASP―Flame retardant additive with sulfone and phosphaphenanthrene groups. MFRASP―Mass fraction of FRASP in DGEBA-FRASP composite resins.
    下载: 导出CSV

    表  2  DGEBA 和不同FRASP质量分数DGEBA-FRASP树脂的UL94与LOI值测试结果

    Table  2.   The UL94 and LOI test results for DGEBA and DGEBA-FRASP composite resins with different mass fraction of FRASP

    SamplesLOI/%t1 +t2 /sDrippingRating
    DGEBA24.8NRYesNo Rating
    DGEBA-FRASP333.76.1+6.3NoV-1
    DGEBA-FRASP634.54.3+3.0NoV-0
    DGEBA-FRASP935.92.3+1.9NoV-0
    Notes: t1―Combustion times after the first application of the flame; t2―Combustion times after the second application of the flame, take the average value of 2 sets of samples. NR―No ranking. DGEBA―Diglycidyl ether of bisphenol A; FRASP―Flame retardant additive with sulfone and phosphaphenanthrene groups.
    下载: 导出CSV

    表  3  DGEBA和不同FRASP质量分数DGEBA-FRASP复合树脂空气下TGA数据

    Table  3.   TGA data of DGEBA and DGEBA-FRASP composite resins with different mass fraction of FRASP under air atmosphere.

    SamplesT5%/℃Tmax/℃Vmax/(%·℃-1)CY700/%
    DGEBA362.2384.7-1.451.90
    FRASP292.1361.4-0.4643.41
    DGEBA-FRASP3343.8374.6-1.262.85
    DGEBA-FRASP6339.1368.3-1.143.72
    DGEBA-FRASP9332.4363.2-1.135.74
    Notes: T5%―Temperature at 5% mass loss; Tmax―Temperature at the maximum mass loss rate; Vmax―Maximum mass loss rate; CY700―Char yield at 700℃; DGEBA―Diglycidyl ether of bisphenol A; FRASP―Flame retardant additive with sulfone and phosphaphenanthrene groups.
    下载: 导出CSV

    表  4  DGEBA和不同FRASP质量分数DGEBA-FRASP复合树脂氮气下TGA数据

    Table  4.   TGA data of neat DGEBA and DGEBA-FRASP composite resins with different mass fraction of FRASP under nitrogen atmosphere.

    SamplesT5%/℃Tmax/℃Vmax/(%·℃-1)CY700/%
    DGEBA367.9387.2-1.7616.58
    FRASP310.1365.3-0.8133.40
    DGEBA-FRASP3357.8382.1-1.2519.48
    DGEBA-FRASP6353.9379.6-1.1921.27
    DGEBA-FRASP9341.3377.1-1.1622.96
    下载: 导出CSV
  • [1] 潘志伟, 马东鹏, 廖雨田, 等. 天然纤维/环氧树脂-混凝土的力学性能及老化规律天然纤维/环氧树脂-混凝土的力学性能及老化规律[J]. 复合材料学报, 2019, 36(6):1510-1519.

    PAN Zhiwei, MA Dongpeng, LIAO Yutian, et al. Mechanical performance and aging behavior of matural fiber/epoxy polymer-concrete[J]. Acta Materiae Compositae Sinica,2019,36(6):1510-1519(in Chinese).
    [2] IDDRISSU I, ZHENG H, ROWLAND S M. DC electrical tree growth in epoxy resin and the influence of the size of inceptive AC trees[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2017,24(3):1965-1972.
    [3] 康峻铭, 孙亮亮, 王继辉, 等. 电子封装用环氧树脂固化温度与应变的三维有限元模拟[J]. 复合材料学报, 2019, 36(10):2330-2340.

    KANG Junming, SUN Liangliang, Wang Jihui, et al. Three-dimensional finite element simulation of temperature and strain in epoxy resin used to electionic packaging during curing[J]. Acta Materiae Compositae Sinica,2019,36(10):2330-2340(in Chinese).
    [4] GUAN Q, LI Y, YI Z, et al. Improving the mechanical, thermal, dielectric and flame retardancy properties of cyanate ester with the encapsulated epoxy resin-penetrated aligned carbon nanotube bundle[J]. Composites Part B: Engineering,2017,123:81-91. doi:  10.1016/j.compositesb.2017.05.029
    [5] LAI F, FU H, ZHAO O, et al. Influence of poly(biphenyl phenoxy phosphate)/APP on flame retardancy of epoxy resin[J]. Acta Polym Sin,2017,4:692-699.
    [6] 王春红, 王利剑, 任子龙, 等. SiO-竹纤维协同改性对环氧树脂基复合材料摩擦磨损性能的影响[J]. 复合材料学报, 2019, 36(7):1633-1639.

    WANG Chunhong, Wang Lijian, Ren Zilong, et al. Effect of sio2-bamboo fiber synergistic modification on friction and wear properties of epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1633-1639(in Chinese).
    [7] XIN D, QIANG H. Study on thermomechanical properties of cross-linked epoxy resin[J]. Mol Simulat,2015,41(13):1081-1085. doi:  10.1080/08927022.2014.938334
    [8] 陈平, 刘胜平, 王德忠. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2011: 219-226.

    CHEN Ping, LIU Shengping, WANG Dezhong. Epoxy resin and its application[M]. Beijing: Chemical Industry Press, 2011: 219-226.
    [9] XU Z, JIA H, YAN L, et al. Application of the compound system of molybdenum trioxide and organic montmorillonite in intumescent flame retardant epoxy resin[J]. Journal of Safety and Environment,2019,19(3):847-853.
    [10] PENG D, LIU Y, YUAN L, et al. Preparation of phosphorus-containing phenolic resin and its application in epoxy resin as a curing agent and flame retardant[J]. Polym Advan Technol,2018,29(4):1294-1302. doi:  10.1002/pat.4241
    [11] XIA Y, TANG R, TAO S, et al. Epoxy resin/phosphorus-based microcapsules: Their synergistic effect on flame retardation properties of high-density polyethylene/graphene nanoplatelets composites[J]. J Appl Polym Sci,2018,135(34):46662. doi:  10.1002/app.46662
    [12] SHI Y, YU B, ZHENG Y, et al. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin[J]. J Colloid Interf Sci,2018,521:160-71. doi:  10.1016/j.jcis.2018.02.054
    [13] XIE M, ZHANG S, DING Y, et al. Synthesis of a heat-resistant DOPO derivative and its application as flame-retardant in engineering plastics[J]. J Appl Polym Sci,2017,134(22):44892.
    [14] SHI-MEI C, FANG L, PEI L, et al. Synthesis of flame retardant based on phosphaphenanthrene and flame retardancy study of epoxy resin modified by intumescent flame retardant system composed of ammonium polyphosphate[J]. Acta Polym Sin,2017(8):1358-1365.
    [15] PAN W, LONG X, JIAN R, et al. Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: Preparation, thermal stability, and flame retardance[J]. Polymer Degradation & Stability,2018,149:69-77.
    [16] ZHENG Z, MA W. Preparation of silicone/epoxy hybrids for electronic packaging[J]. Polymer Materials Science & Engineering,2018,34(3):111-115.
    [17] SUN Z, HOU Y, HU Y, et al. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin[J]. Mater Chem Phys,2018,214:154-164. doi:  10.1016/j.matchemphys.2018.04.065
    [18] XU M, LI X, LI B. Synthesis of a novel cross-linked organophosphorus-nitrogen containing polymer and its application in flame retardant epoxy resins[J]. Fire & Materials,2016,40(6):848-860.
    [19] 王志国, 梁兵, 刘徐越. 磷氮阻燃剂PDAB-DOPO的制备及阻燃环氧树脂复合材料性能研究[J]. 化工新型材料, 2018, 46(12):68-71.

    WANG Zhiguo, LIANG Bing, LIU Xuyue. Preparation of phosphorus-nitrogen PDAB-POPO and its flame retardant epoxy resin[J]. NEW CHEMICAL MATERIALS,2018,46(12):68-71(in Chinese).
    [20] 江民文, 尹晨辉, 李胜, 等. 环三磷腈-DOPO大分子阻燃剂的合成及阻燃环氧树脂性能[J]. 高等学校化学学报, 2019, 40(12):2615-2622. doi:  10.7503/cjcu20190257

    JIANG Minwen, YIN Chenhui, LI Sheng, et al. Synthesis of DOPO-based cyclotriphosphazene macromolecule flame retardant and its performance in flame-retarded epoxy resin[J]. Chemical Journal of Chinese Universities,2019,40(12):2615-2622(in Chinese). doi:  10.7503/cjcu20190257
    [21] 黄邹松, 龙丽娟, 黄伟江, 等. 一种DOPO衍生物合成及其对PLA阻燃性能的影响[J]. 工程塑料应用, 2019, 47(5):127-130. doi:  10.3969/j.issn.1001-3539.2019.05.024

    HUANG Zousong, LONG Lijuan, HUANG Weijiang, et al. Synthesis of a DOPO derivative and its effect on flame retardancy of polylactic acid[J]. Engineering Plastics Application,2019,47(5):127-130(in Chinese). doi:  10.3969/j.issn.1001-3539.2019.05.024
    [22] LIU C, CHEN T, YUAN C H, et al. Modification of epoxy resin through the self-assembly of a surfactant-like multi-element flame retardant[J]. Journal of Materials Chemistry A,2016,4(9):3462-3470. doi:  10.1039/C5TA07115A
    [23] GU L, CHEN G, YAO Y. Two novel phosphorus–nitrogen-containing halogen-free flame retardants of high performance for epoxy resin[J]. Polym Degrad Stabil,2014,108:68-75. doi:  10.1016/j.polymdegradstab.2014.05.030
    [24] LIANG W-J, ZHAO B, ZHAO P-H, et al. Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy[J]. Polym Degrad Stabil,2017,135:140-151. doi:  10.1016/j.polymdegradstab.2016.11.023
    [25] RAKOTOMALALA M, WAGNER S, DOERING M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications[J]. Materials,2010,3(8):4300-4327. doi:  10.3390/ma3084300
    [26] 游歌云, 冯彬, 刘晓凤, 等. 含磷/氮/硫协效阻燃剂的合成及对环氧树脂的阻燃作用[J]. 化学研究与应用, 2019, 11(31):1898-1906.

    YOU Geyun, FENG Bing, LIU Xiaofeng, et al. Synthesis of a phosphorus/nitrogen/sulphur containing synergistic flame retardant and its flame retardancy on epoxy resin[J]. Chemical Research and Application,2019,11(31):1898-1906(in Chinese).
    [27] 潘莹, 朱东雨, 郭建维. 新型硫氮阻燃剂的合成及其环氧树脂应用[J]. 热固性树脂, 2019, 34(5):38-44.

    PAN Ying, ZHU Dongyu, GUO Jianwei. Synthesis of novel sulfur-nitrogen flame retardant and its application in epoxy resin[J]. Thermosetting Resin,2019,34(5):38-44(in Chinese).
    [28] ZHANG W, FINA A, CUTTICA F, et al. Blowing-out effect in flame retarding epoxy resins: Insight by temperature measurements during forced combustion[J]. Polym Degrad Stabil,2016,131(9):82-90.
    [29] ISLAM M S, TAMAKAWA D, TANAKA S, et al. Polarized microscopic laser Raman scattering spectroscopy for edge structure of epitaxial graphene and localized vibrational mode[J]. Carbon,2014,77:1073-1081. doi:  10.1016/j.carbon.2014.06.023
    [30] WANG Z, WU W, ZHONG Y, et al. Flame-retardant materials based on phosphorus-containing polyhedral oligomeric silsesquioxane and bismaleimide/diallylbisphenol a with improved thermal resistance and dielectric properties[J]. J Appl Polym Sci,2015,132(9):41545.
    [31] JIANG S-D, BAI Z-M, TANG G, et al. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins[J]. Acs Applied Materials & Interfaces,2014,6(16):14076-14086.
    [32] SAHOO S, PALAI R, BARIK S K, et al. Raman spectroscopic studies of pulsed laser-induced defect evolution in graphene[J]. J Raman Spectrosc,2013,44(6):798-802. doi:  10.1002/jrs.4281
    [33] 卢林刚, 王晓, 杨守生, 等. 单组分磷-氮膨胀阻燃剂的合成及成炭性能[J]. 高分子材料科学与工程, 2012, 28(7):10-13.

    LU Lingang, WANG Xiao, YANG Shousheng, et al. Synthesis and charring of arborescent monomolecular P-N intumescent flame retardant[J]. Polymer Materials Science and Engineering,2012,28(7):10-13(in Chinese).
    [34] SCHARTEL B, BRAUN U, BALABANOVICH A I, et al. Pyrolysis and fire behaviour of epoxy systems containing a novel 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener[J]. Eur Polym J,2008,44(3):704-715. doi:  10.1016/j.eurpolymj.2008.01.017
    [35] ZHANG W, LI X, YANG R. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)[J]. Polym Degrad Stabil,2011,96(10):1821-1832. doi:  10.1016/j.polymdegradstab.2011.07.014
  • [1] 王春红, 鹿超, 贾瑞婷, 陆鑫, 左恒峰, 王瑞.  洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能, 复合材料学报. 2020, 37(7): 1581-1589. doi: 10.13801/j.cnki.fhclxb.20191226.002
    [2] 汪蔚, 曹建达, 郑敏敏, 陈婷婷, 杨李懿.  BN表面沉积纳米Sn对BN/环氧树脂复合材料导热绝缘性能的影响, 复合材料学报. 2020, 37(7): 1547-1554. doi: 10.13801/j.cnki.fhclxb.20191113.005
    [3] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. 2020, 37(7): 1571-1580. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [4] 吴楠, 郝旭峰, 史耀辉, 鞠博文, 钱元, 蔡登安, 周光明.  高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验, 复合材料学报. 2020, 37(7): 1619-1628. doi: 10.13801/j.cnki.fhclxb.20191107.002
    [5] 李斌, 常飞, 肖尧, 李曙林, 孙晋茹.  碳纤维增强银粉改性树脂复合材料的雷击损伤效应, 复合材料学报. 2020, 37(8): 1911-1920. doi: 10.13801/j.cnki.fhclxb.20191118.002
    [6] 罗健, 石建军, 贾彬, 莫军, 黄辉.  低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响, 复合材料学报. 2020, 37(12): 1-12.
    [7] 郭丽君, 陆方舟, 李想, 蔡登安, 张庆茂, 陈建农, 刘伟先, 周光明.  碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制, 复合材料学报. 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
    [8] 段瑛涛, 武肖鹏, 王智文, 敬敏, 栗娜, 刘强, 宁慧铭, 胡宁.  碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能, 复合材料学报. 2020, 37(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20200215.002
    [9] 谢波涛, 高亮, 江帅, 李梦军.  含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应, 复合材料学报. 2020, 37(11): 1-9.
    [10] 刘新, 陈铎, 何辉永, 孙涛, 武湛君.  热塑性颗粒-无机粒子协同增韧碳纤维增强环氧树脂复合材料, 复合材料学报. 2020, 37(8): 1904-1910. doi: 10.13801/j.cnki.fhclxb.20191113.006
    [11] 周春苹, 刘付超, 周长聪, 李兴德.  石英纤维/环氧树脂复合材料结构静强度的可靠度计算及全局灵敏度分析, 复合材料学报. 2020, 37(7): 1611-1618. doi: 10.13801/j.cnki.fhclxb.20190930.002
    [12] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [13] 汤连东, 吴袁泊, 袁利萍, 胡云楚, 刘月姣, 范友华.  磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用, 复合材料学报. 2020, 37(9): 2125-2136. doi: 10.13801/j.cnki.fhclxb.20200512.001
    [14] 涂言言, 赵子涵, 孙一强.  FeOOH-Ni(OH)2复合材料的制备及其电催化析氧性能, 复合材料学报. 2020, 37(8): 1944-1950. doi: 10.13801/j.cnki.fhclxb.20190618.001
    [15] 欧阳泽宇, 王珂珂, 饶琼, 张志龙, 扶碧波, 彭雄奇.  石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能, 复合材料学报. 2020, 37(): 1-10.
    [16] 孙颖颖, 周璐瑶, 韩宇, 崔柳.  气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟, 复合材料学报. 2020, 37(10): 1-7. doi: 10.13801/j.cnki.fhclxb.20200111.004
    [17] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [18] 吴少惠, 马荣锋, 吴平伟, 戴金辉.  空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能, 复合材料学报. 2020, 37(10): 1-8. doi: 10.13801/j.cnki.fhclxb.20200106.001
    [19] 张明艳, 王登辉, 吴子剑, 杨振华, 刘居.  改性碳纳米管/环氧树脂复合材料的介电性能, 复合材料学报. 2020, 37(6): 1285-1294. doi: 10.13801/j.cnki.fhclxb.20191105.001
    [20] 韩永森, 孙健, 张昕, 郭文敏, 李忠华.  微纳米SiC/环氧树脂复合材料的界面和非线性电导特性, 复合材料学报. 2020, 37(7): 1562-1570. doi: 10.13801/j.cnki.fhclxb.20191120.002
  • 加载中
计量
  • 文章访问数:  146
  • HTML全文浏览量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-31
  • 录用日期:  2020-03-10
  • 网络出版日期:  2020-09-25

目录

    /

    返回文章
    返回