留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机结构复合材料等效导热系数的理论预测

孙海浩 石义雷 刘伟强 石卫波 粟斯尧 肖雨

孙海浩, 石义雷, 刘伟强, 等. 随机结构复合材料等效导热系数的理论预测[J]. 复合材料学报, 2021, 38(9): 2925-2933. doi: 10.13801/j.cnki.fhclxb.20201230.001
引用本文: 孙海浩, 石义雷, 刘伟强, 等. 随机结构复合材料等效导热系数的理论预测[J]. 复合材料学报, 2021, 38(9): 2925-2933. doi: 10.13801/j.cnki.fhclxb.20201230.001
SUN Haihao, SHI Yilei, LIU Weiqiang, et al. Theoretical prediction for effective thermal conductivity of composite materials with random structure[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2925-2933. doi: 10.13801/j.cnki.fhclxb.20201230.001
Citation: SUN Haihao, SHI Yilei, LIU Weiqiang, et al. Theoretical prediction for effective thermal conductivity of composite materials with random structure[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2925-2933. doi: 10.13801/j.cnki.fhclxb.20201230.001

随机结构复合材料等效导热系数的理论预测

doi: 10.13801/j.cnki.fhclxb.20201230.001
基金项目: 国家自然科学基金(11572340)
详细信息
    通讯作者:

    石义雷,硕士,研究员,研究方向为高超声速气动热与热防护  E-mail:shiyl72@163.com

  • 中图分类号: TB332;TB35

Theoretical prediction for effective thermal conductivity of composite materials with random structure

  • 摘要: 基于随机生成结构法创建了纤维随机排布的复合材料纤维体,采用链表数据结构实现了一种物理直观、不依赖网格划分的纤维体等效导热系数理论预测方法。将该方法用于酚醛浸渍碳烧蚀材料,研究了影响等效导热系数的相关因素。结论表明:复合材料的等效导热系数并非材料固有属性,纤维长度与试件尺度相近时,试件尺度会影响材料导热系数;单位空间的纤维根数与等效导热系数呈非线性正相关关系;但等效导热系数并非体积分数的单变量函数,还取决于纤维的连通性,有效长度愈小,则表明连通性愈好,等效导热系数愈大。

     

  • 图  1  酚醛浸渍碳烧蚀(PICA)材料微观形貌[1]

    Figure  1.  Micrograph of phenolic impregnated carbon ablator (PICA) material[1]

    图  2  纤维生长模型示意图

    Figure  2.  Sketch of fibers generation model

    l—Fiber length; θ, φ—Directional angle

    图  3  边界处的纤维示意图

    Figure  3.  Sketch of fibers at boundary

    hi—Dietance to the boundary; θ1, θ2—Boundary angle

    图  4  一般规则排布情况下的温度场

    Figure  4.  Temperature distribution in general regular arrangement situation

    图  5  质量分数5%情况下的碳纤维随机增强环氧树脂复合材料中纤维和温度分布情况

    Figure  5.  Fibers and temperature distribution for carbon fiber reinforced epoxy resin (5wt%)

    图  6  碳纤维随机增强环氧树脂复合材料数值模拟结果与实验结果的比较

    Figure  6.  Comparison of simulation and experimental results for carbon fiber reinforced epoxy resin

    图  7  不同纤维特征长度下酚醛浸渍碳烧蚀材料的温度分布

    Figure  7.  Temperature distribution of phenolic impregnated carbon ablator under different intrinsic fiber length ((a) 1.6 mm; (b) 3.2 mm; (c) 4.8 mm; (d) 6.4 mm; (e) 8.0 mm; (f) 9.6 mm)

    图  8  不同纤维数目下酚醛浸渍碳烧蚀材料的温度分布

    Figure  8.  Temperature distribution of phenolic impregnated carbon ablator under different fiber number ((a) 250; (b) 300; (c) 350; (d) 400; (e) 450; (f) 500)

    表  1  不同纤维特征长度下的酚醛浸渍碳烧蚀材料等效导热系数

    Table  1.   Effective thermal conductivity of phenolic impregnated carbon ablator under different intrinsic fiber length

    Fiber length/mmVolume fractionEffective length/mmEffective thermal conductivity $\dfrac{{{\lambda _{{\rm{eff}}}}}}{{{\lambda _{\rm{f}}}}}$
    1.60 1.01×10−1 1.17×10−1 2.10×10−2
    3.20 1.71×10−1 7.52×10−2 6.40×10−2
    4.80 2.13×10−1 6.16×10−2 8.64×10−2
    6.40 2.30×10−1 5.65×10−2 8.92×10−2
    8.00 2.39×10−1 5.37×10−2 9.05×10−2
    9.60 2.42×10−1 5.34×10−2 9.09×10−2
    下载: 导出CSV

    表  2  不同纤维数目下的等效导热系数

    Table  2.   Effective thermal conductivity under different fiber number

    Fiber numberVolume fractionEffective length/mmEffective thermal conductivity $\dfrac{{{\lambda _{{\rm{eff}}}}}}{{{\lambda _{\rm{f}}}}}$
    250 9.90×10−1 1.17×10−1 1.96×10−2
    300 1.20×10−1 1.02×10−1 2.93×10−2
    350 1.40×10−1 9.15×10−2 3.74×10−2
    400 1.59×10−1 8.19×10−2 4.80×10−2
    450 1.81×10−1 7.22×10−2 5.59×10−2
    500 2.01×10−1 6.65×10−2 6.49×10−2
    下载: 导出CSV

    表  3  相同体积分数(20vol%)下不同纤维尺寸的等效导热系数

    Table  3.   Effective thermal conductivity under different fiber size with same volume fraction (20vol%)

    CaseRadius×length/mmEffective length/mmEffective thermal conductivity $\dfrac{{{\lambda _{{\rm{eff}}}}}}{{{\lambda _{\rm{f}}}}}$
    Case1 0.010×2.65 4.46×10−2 7.83×10−2
    Case2 0.015×1.60 6.65×10−2 6.49×10−2
    Case3 0.020×1.13 8.58×10−2 4.15×10−2
    Case4 0.025×0.88 1.01×10−1 1.93×10−2
    Case5 0.030×0.72 1.13×10−1 2.14×10−3
    Case6 0.035×0.61 1.20×10−1 2.73×10−13
    下载: 导出CSV
  • [1] STACKPOOLE M, SEPKA S, COZMUTA I. Post-flight evaluation of stardust sample return capsule forebody heatshield material[C]. 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.
    [2] COVINGTON M A, HEINEMANN J M, GOLDSTEING H E. Performance of a low density ablative heat shield material[J]. Journal of Spacecraft and Rockets,2008,45(4):854-864. doi: 10.2514/1.38249
    [3] PILLING M W, YATERS B, BLACK M A. The thermal conductivity of carbon fiber-reinforced composite[J]. Journal Of Materials Science & Technology,1979,14:1326.
    [4] 陈则韶, 钱军, 叶一火. 复合材料等效导热系数的理论推算[J]. 中国科学技术大学学报, 1992, 22(4):416-424.

    CHEN Zeshao, QIAN Jun, YE Yihuo. Predicting theory of effective thermal conductivity of complex material[J]. Journal of China University of Science and Technology,1992,22(4):416-424(in Chinese).
    [5] 程远贵. 耐火纤维的高温热物性研究[D]. 成都: 四川大学, 2001.

    CHENG Yuangui. Research on thermophysic properties of refracotry fiber under high temperature[D]. Chengdu: Sichuan University, 2001(in Chinese).
    [6] GORI F, CORASANTITI S, WOREK W M, et al. Theoretical prediction of thermal conductivity for thermal protection systems[J]. Applied Thermal Engineering,2012,49:124-130. doi: 10.1016/j.applthermaleng.2011.07.012
    [7] SCHUSTER J, GLOWANIA M. Thermal conductivities of three-dimensionally woven fabric composites[J]. Composites Science and Technology,2008,68(9):2085-2091. doi: 10.1016/j.compscitech.2008.03.024
    [8] 夏彪, 卢子兴. 三维编制复合材料热物理性能的有限元分析[J]. 航空学报, 2011, 32(6):1040-1049.

    XIA Biao, LU Zixing. Finite element analysis on thermo-physical properties of 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica,2011,32(6):1040-1049(in Chinese).
    [9] 张海峰, 葛新石, 叶宏. 预测复合材料导热系数的热阻网络法[J]. 功能材料, 2005, 36(5):757-759. doi: 10.3321/j.issn:1001-9731.2005.05.035

    ZHANG Haifeng, GE Xinshi, YE Hong. Resistance network for predicting the thermal conductivity of composite materials[J]. Journal of Functional Materials,2005,36(5):757-759(in Chinese). doi: 10.3321/j.issn:1001-9731.2005.05.035
    [10] 谢涛, 何雅玲, 陶文铨. 随机结构多孔介质等效热导率数值计算[J]. 工程热物理学报, 2012, 33(7):1197-1200.

    XIE Tao, HE Yaling, TAO Wenquan. Numerical calculation of effective thermal conductivity for complex multiphase materials[J]. Journal of Engineering Thermophysics,2012,33(7):1197-1200(in Chinese).
    [11] MARTINEZ-GARCIA J, BRAGINSKY L, SHKLOVER V. Correlation function analysis of fiber networks: Implications for thermal conductivity[J]. Physical Review B,2011,84(5):1787-1794.
    [12] WANG M, WANG J K, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E,2007(3):036702.
    [13] 赵雅薇. 片状和纤维状碳材料填充的导热复合材料的制备与研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    ZHAO Yawei. Preparation and research of thermal conductivity composites filled with flaky and fibrous carbon materials[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [14] 张弛, 阚安康, 孟闯. 介观尺度下纤维导热预测与试验研究[J]. 南京航空航天大学学报, 2017, 49(4):574-579.

    ZHANG Chi, KAN Ankang, MENG Chuang, et al. Experimental study and thermal conductivity prediciton of fiber in mesoscale condition[J]. Journal of Nanjing University of Aeronautics & Astronautics,2017,49(4):574-579(in Chinese).
    [15] 徐建华. 纤维质隔热材料导热系数的计算方法[J]. 江苏陶瓷, 1991, 53(2):11-14.

    XU Jiahua. The computational method on thermal conductivity of fiberous heat insulating materials[J]. Jiangsu Ceramic,1991,53(2):11-14(in Chinese).
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1107
  • HTML全文浏览量:  686
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 录用日期:  2020-12-20
  • 网络出版日期:  2020-12-30
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回