留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯醇乳液改性对汉麻秸秆纤维增强水泥基复合材料性能影响

王春红 左祺 支中祥 徐磊 SARANIZakaria SHERAZHussain Siddique Yousfani

王春红, 左祺, 支中祥, 等. 聚乙烯醇乳液改性对汉麻秸秆纤维增强水泥基复合材料性能影响[J]. 复合材料学报, 2020, 37(0): 1-8
引用本文: 王春红, 左祺, 支中祥, 等. 聚乙烯醇乳液改性对汉麻秸秆纤维增强水泥基复合材料性能影响[J]. 复合材料学报, 2020, 37(0): 1-8
Chunhong WANG, Qi ZUO, Zhongxiang ZHI, Lei XU, Zakaria SARANI, Hussain Siddique Yousfani SHERAZ. Effect of polyvinyl alcohol emulsion modification on the performance of hemp straw fiber reinforced cementitious composite[J]. Acta Materiae Compositae Sinica.
Citation: Chunhong WANG, Qi ZUO, Zhongxiang ZHI, Lei XU, Zakaria SARANI, Hussain Siddique Yousfani SHERAZ. Effect of polyvinyl alcohol emulsion modification on the performance of hemp straw fiber reinforced cementitious composite[J]. Acta Materiae Compositae Sinica.

聚乙烯醇乳液改性对汉麻秸秆纤维增强水泥基复合材料性能影响

基金项目: 国家自然科学基金(11802205)
详细信息
    通讯作者:

    王春红,博士,教授,研究方向为天然纤维及绿色复合材料  E-mail:wangchunhong@tiangong.edu.cn

  • 中图分类号: TB332

Effect of polyvinyl alcohol emulsion modification on the performance of hemp straw fiber reinforced cementitious composite

  • 摘要: 为了解决汉麻秸秆纤维增强水泥基复合材料(Hemp straw fiber reinforced cementitious composite, HRCC)力学性能较差的问题,提出用聚乙烯醇(Polyvinyl alcohol, PVA)乳液对HRCC进行改性。在优化了秸秆纤维的粒径与掺入量后,采用PVA乳液与秸秆纤维和水泥进行共混成型,制备了改性后的HRCC。研究了不同质量比的PVA乳液对HRCC的抗折强度、密度、比强度和弯曲韧性的影响,通过含水率、吸水率以及红外光谱测试揭示了PVA乳液对HRCC的改性机制。结果表明:粒径为1700 μm以及掺入量为12%时,秸秆纤维对HRCC的增强作用最好。随着PVA乳液质量比的增加,改性后HRCC的密度逐渐下降,弯曲韧性逐渐提高。当PVA乳液质量比为4.8%时,相较于未改性的HRCC,改性后的抗折强度和比强度分别提高了17.17%、20.50%。通过PVA乳液改性使HRCC中秸秆纤维与水泥之间的界面被改善,并缓解了秸秆纤维对水泥水化反应的阻碍作用。
  • 图  1  不同粒径的汉麻秸秆纤维和汉麻秸秆纤维增强水泥基复合材料(HRCC)截面的形貌

    Figure  1.  Morphology of hemp straw fiber and the cross section of hemp straw fiber reinforced cementitious composite (HRCC) with different particle sizes

    图  2  不同粒径下HRCC的抗折强度、密度以及比强度

    Figure  2.  Flexural strength, density and specific strength of HRCC with different particle sizes

    图  3  不同掺入量下HRCC的抗折强度、密度以及比强度

    Figure  3.  Flexural strength, density and specific strength of HRCC with different mixing amounts

    图  4  不同质量比下聚乙烯醇(PVA)乳液对HRCC的抗折强度、密度以及比强度的影响

    Figure  4.  Effect of polyvinyl alcohol (PVA) emulsion with different mass ratios on flexural strength, density and specific strength of HRCC

    图  5  不同质量比下PVA乳液对HRCC弯曲韧性的影响

    Figure  5.  Effect of PVA emulsion with different mass ratios on flexural toughness of HRCC

    图  6  纯水泥、未改性以及PVA乳液改性的HRCC的制备流程

    Figure  6.  Preparation process of pure cement, unmodified HRCC and HRCC modified by PVA emulsion

    图  7  水泥以及不同HRCC的断面形貌:(a) 纯水泥;(b) 未改性HRCC(0%);((c)~(h))质量比分别为0.6%、1.2%、2.4%、4.8%、9.6%、19.2%的PVA乳液改性HRCC

    Figure  7.  Broken cross sectional morphologies of pure cement and different HRCC: (a) Pure cement; (b) unmodified HRCC (0%); ((c)-(h)) HRCC modified by PVA emulsion with 0.6%, 1.2%, 2.4%, 4.8%, 9.6%, 19.2% mass ratios

    图  8  不同质量比下PVA乳液对HRCC含水率和吸水率的影响

    Figure  8.  Effect of PVA emulsion with different mass ratios on moisture content and water absorption of HRCC

    图  9  利用FTIR表征水化产物结构:(a) 纯水泥;(b) 未改性的HRCC;((c)~(e)) 0.6%、4.8%和19.2%质量比的PVA乳液改性HRCC

    Figure  9.  Hydration products characterized by FTIR analysis of (a)pure cement, (b)unmodified HRCC, ((c)-(e))HRCC modified by PVA emulsion in 0.6% mass ratio, 4.8% mass ratio and 19.2% mass ratio

    表  1  不同粒径汉麻秸秆纤维的实际尺寸

    Table  1.   Actual size of hemp straw fiber with different particle sizes

    Particle size/μm40001700830380180
    Average length/mm 15.63 7.21 3.64 0.82 0.36
    Average width/mm 3.77 0.87 0.56 0.31 0.16
    Average thickness/mm 2.41 0.52 0.39 0.27 0.16
    Length-diameter ratio range 5.06-37.03 10.37-36.45 7.66-37.66 2.83-38.66 2.25-38.94
    下载: 导出CSV

    表  2  基于不同纤维粒径和掺入量的HRCC试样序号

    Table  2.   Sample numbers of HRCC with different hemp straw fiber particle sizes and mixing amounts

    No.Hemp straw fiber size/μmMass of hemp straw fiber/gMass of cement/gMass of fly ash/gMass of water/g
    0 0 0 1000 55 440
    1 4000 120 1000 55 490
    2 1700 120 1000 55 490
    3 830 120 1000 55 490
    4 380 120 1000 55 490
    5 180 120 1000 55 490
    6 1700 40 1000 55 460
    7 1700 80 1000 55 475
    8 1700 120 1000 55 490
    9 1700 160 1000 55 510
    10 1700 200 1000 55 530
    下载: 导出CSV
  • [1] 王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系[J/OL]. 复合材料学报: 1-8[2020-06-02]. https://doi.org/10.13801/j.cnki.fhclxb.20200428.002.

    WANG Xinling, YANG Guanghua, QIAN Wenwen, et al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh[J/OL]. Acta Materiae Compositae Sinica: 1-8[2020-06-02]. https://doi.org/10.13801/j.cnki.fhclxb.20200428.002. (in Chinese).
    [2] 张聪, 夏超凡, 袁振, 等. 混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系[J/OL]. 复合材料学报: 1-10[2020-06-02]. https://doi.org/10.13801/j.cnki.fhclxb.20191114.001.

    ZHANG Cong, XIA Chaofan, YUAN Zhen, et al. Tension constitutive relation of hybrid fiber reinforced strain hardening cementitous composites[J/OL]. Acta Materiae Compositae Sinica: 1-10[2020-06-02]. https://doi.org/10.13801/j.cnki.fhclxb.20191114.001. (in Chinese).
    [3] 吴丽丽, 王云飞, 谢灵慧, 等. 玻璃纤维增强聚合物复合材料筋与工程水泥基复合材料黏结性能[J]. 复合材料学报, 2020, 37(03):696-706.

    WU Lili, WANG Yunfei, XIE Linghui, et al. Bonding behavior between glass fiber reinforced polymer composite bars and engineered cementitious composite[J]. Acta Materiae Compositae Sinica,2020,37(03):696-706(in Chinese).
    [4] MUKHERJEE A, MACDOUGALL C. Structural benefits of hempcrete infill in timber stud walls[J]. International Journal of Sustainable Building Technology and Urban Development,2013,4(4):295-305. doi:  10.1080/2093761X.2013.834280
    [5] DICK K J, PINKOS J. Thermal, Moisture and Energy Performance of a Hempcrete Test Structure in the Northern Prairie Climate of Manitoba, Canada[J]. Key Engineering Materials,2014,600:475-482. doi:  10.4028/www.scientific.net/KEM.600.475
    [6] ELFORDY S, LUCAS F, TANCRET F, et al. Mechanical and thermal properties of lime and hemp concrete ("hempcrete") manufactured by a projection process[J]. Construction & Building Materials,2008,22(10):2116-2123.
    [7] 张蓓蓓, 马颖, 耿维, 等. 中国油菜秸秆资源的生物质能源利用潜力评价[J]. 可再生能源, 2017, 35(1):126-134.

    ZHANG Peipei, MA Ying, GENG Wei, et al. Assessment of rape straw resources for biomass energy production in China[J]. Renewable Energy Resources,2017,35(1):126-134(in Chinese).
    [8] 王金武, 唐汉, 王金峰. 东北地区作物秸秆资源综合利用现状与发展分析[J]. 农业机械学报, 2017, 48(5):1-21.

    WANG Jinwu, TANG Han, WANG Jinfeng. Comprehensive Utilization Status and Development Analysis of Crop Straw Resource in Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(5):1-21(in Chinese).
    [9] CESAR N, AMZIANE S, CHATEAUNEUF A, et al. Variability of the mechanical properties of hemp concrete[J]. Materials Today Communications,2016,7:122-133. doi:  10.1016/j.mtcomm.2016.03.003
    [10] 宋丽贤, 张平, 姚妮娜, 等. 木粉粒径和填量对木塑复合材料力学性能影响研究[J]. 功能材料, 2013, 44(17):2451-2454.

    SONG Lixian, ZHANG Ping, YAO Nina, et al. Study on effect of particle diameter and filling quantity of wood flour on mechanical properties of wood-plastics composite[J]. Journal of Functional Materials,2013,44(17):2451-2454(in Chinese).
    [11] 王春红, 支中祥, 任子龙, 等. 稻壳纤维粒径和掺量分数对水泥复合材料性能的影响[J]. 复合材料学报, 2018, 35(06):1582-1589.

    WANG Chunhong, ZHI Zhongxiang, REN Zhilong, et al. Effect of rice husk fiber particle size and content on the properties of cement composite[J]. Acta Materiae Compositae Sinica,2018,35(06):1582-1589(in Chinese).
    [12] 张琳, 刘福胜, 任淑霞, 等. 小麦秸秆纤维水泥基材料性能试验研究[J]. 混凝土, 2013(9):74-76.

    ZHANG Lin, LIU Fusheng, REN Shuxia, et al. Research on properties of cementitious wheat straw fiber composite[J]. Concrete,2013(9):74-76(in Chinese).
    [13] SINGH S M. Alkali resistance of some vegetable fibers and their adhesion with Portland-cement[J]. Research and Industry,1985,15:28-40.
    [14] CANOVAS M F, SELVA N H, KAWICHE G M. New economical solutions for improvement of durability of Portland cement mortars reinforced with sisal fibres[J]. Materials & Structures,1992,25(7):417-422.
    [15] JR H S, WARDEN P G, COUTTS R S P. Potential of alternative fibre cements as building materials for developing areas[J]. Cement & Concrete Composites,2003,25(6):585-592.
    [16] 陈国新, 慈军, 秦岷, 等. 不同界面处理法棉花秸秆水泥基砌块力学性能影响研究[J]. 混凝土, 2013(11):139-141.

    CHEN Guoxin, CI Jun, QIN Min, et al. Study on mechanical impact of cotton stalk cement-based block with different surface modification methods[J]. Concrete,2013(11):139-141(in Chinese).
    [17] 熊德胜. 高聚物改性稻壳—水泥复合材料研究[D]. 东北林业大学, 2012.

    XIONG Deisheng. Study on polymer modified rice husk-cement composites[D]. Northeast Forestry University, 2012 (in Chinese).
    [18] 中国国家标准化管理委员会(标准制定单位). 纤维水泥制品试验方法: GB/T 7019-2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test methods for fiber cement prdoucts: GB/T 7019-2014[S], Beijing: China Standards Press, 2014 (in Chinese).
    [19] HAN J G, YAN P Y. Influence of Fiber Type on Concrete Flexural Toughness[J]. Advanced Materials Research,2011,287-290:1179-1183. doi:  10.4028/www.scientific.net/AMR.287-290.1179
    [20] 刘巧玲. 秸秆基混凝土的性能研究[D]. 湖南农业大学, 2013.

    LIU Qiaoling. Study on the characteristics of straw-based[D]. Hunan Agricultural University, 2013 (in Chinese).
    [21] 胡洁琼, 赵国栋, 刘开平, 等. 改性秸秆纤维对水泥砂浆韧性的影响研究[J]. 工程建设与设计, 2017(2):72-74.

    HU Jieqiong, ZHAO Guodong, LIU Kaiping, et al. Effects of Modified Wheat Straw Fibers on the Toughness of the Cement Mortar[J]. Construction & Design for Project,2017(2):72-74(in Chinese).
    [22] 王继博, 刘玮雯, 罗作球, 等. 不同表面处理麦秸秆对水泥基材料力学性能的影响[J]. 商品混凝土, 2017(12):33-37.

    WANG Jibo, LIU Weiwen, LUO Zuoqiu, et al. Effects of wheat straw treated with different surface treatments on mechanical properties of cement-based materials[J]. Eady-Mixed Concrete,2017(12):33-37(in Chinese).
    [23] DENIS D, CHRISTINE L. 水泥水化与水化硅酸钙的结构和化学组成之间的相互作用[J]. 硅酸盐学报, 2015, 043(010):1324-1330.

    DENIS D, CHRISTINE L. Mutual Interaction Between Hydration of Portland Cement and Structure and Stoichiometry of Hydrated Calsium Silicate[J]. Journal of the Chinese Ceramic Society,2015,043(010):1324-1330(in Chinese).
    [24] JOSHI V S, JOSHI M J. FTIR spectroscopic, thermal and growth morphological studies of calcium hydrogen phosphate dihydrate crystals[J]. Crystal Research & Technology,2003,38(9):817-821.
  • [1] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
    [2] 周典瑞, 高亮, 霍红宇, 张宝艳.  热塑性树脂基复合材料用碳纤维上浆剂研究进展, 复合材料学报. 2020, 37(8): 1785-1795. doi: 10.13801/j.cnki.fhclxb.20200507.001
    [3] 王继华, 柳军旺, 王春锋, 王永亮, 韩志东.  聚偏氟乙烯基复合材料的制备及介电性能, 复合材料学报. 2020, 37(): 1-9.
    [4] 王新玲, 陈永杰, 钱文文, 李可, 朱俊涛.  高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验, 复合材料学报. 2020, 37(): 1-10.
    [5] 朱俊涛, 赵亚楼, 李燚, 王新玲.  高强不锈钢绞线网与工程水泥基复合材料黏结锚固性能试验, 复合材料学报. 2020, 37(7): 1731-1742. doi: 10.13801/j.cnki.fhclxb.20191010.001
    [6] 钱晓明, 魏楚, 钱幺, 刘永胜, 王立晶.  空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能, 复合材料学报. 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001
    [7] 李传习, 李游, 高有为, 胡正, 刘一鸣.  纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响, 复合材料学报. 2020, 37(10): 1-17. doi: 10.13801/j.cnki.fhclxb.20200319.001
    [8] 顾升, 王雪, 徐国祺.  基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料, 复合材料学报. 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
    [9] 郎风超, 朱静, 李云芳, 潘俊臣, 姜爱峰, 杨诗婷, 邢永明.  SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能, 复合材料学报. 2020, 37(6): 1383-1389. doi: 10.13801/j.cnki.fhclxb.20190712.001
    [10] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. 2020, 37(7): 1571-1580. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [11] 张聪, 余志辉, 韩世诚, 华渊.  混杂纤维增强应变硬化水泥基复合材料的压缩本构关系, 复合材料学报. 2020, 37(5): 1221-1226. doi: 10.13801/j.cnki.fhclxb.20190823.002
    [12] 张聪, 夏超凡, 袁振, 李志华.  混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系, 复合材料学报. 2020, 37(7): 1754-1762. doi: 10.13801/j.cnki.fhclxb.20191114.001
    [13] 周文英, 张财华, 李旭, 张帆, 张祥林.  基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能, 复合材料学报. 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
    [14] 王腾蛟, 许金余, 朱从进, 任韦波.  灰粉比对苯丙乳液基水泥复合材料静态力学性能及破坏形态的影响, 复合材料学报. 2020, 37(9): 2324-2335. doi: 10.13801/j.cnki.fhclxb.20200212.002
    [15] 阳雄南, 张效林, 聂孙建, 王哲, 卓光铭, 李少歌.  不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响, 复合材料学报. 2020, 37(5): 1033-1040. doi: 10.13801/j.cnki.fhclxb.20190902.002
    [16] 李玮, 程先华.  稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响, 复合材料学报. 2020, 37(11): 1-9.
    [17] 丁春香, 潘明珠, 杨舒心, 梅长彤.  基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为, 复合材料学报. 2020, 37(9): 2173-2182. doi: 10.13801/j.cnki.fhclxb.20200122.001
    [18] 王娟, 张法明, 商彩云, 张彬.  石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能, 复合材料学报. 2020, 37(12): 1-12.
    [19] 崔一纬, 魏亚.  水泥基复合材料热电效应综述:机制、材料、影响因素及应用, 复合材料学报. 2020, 37(9): 2077-2093. doi: 10.13801/j.cnki.fhclxb.20200423.002
    [20] 韩永森, 孙健, 张昕, 郭文敏, 李忠华.  微纳米SiC/环氧树脂复合材料的界面和非线性电导特性, 复合材料学报. 2020, 37(7): 1562-1570. doi: 10.13801/j.cnki.fhclxb.20191120.002
  • 加载中
计量
  • 文章访问数:  68
  • HTML全文浏览量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 录用日期:  2020-08-14

目录

    /

    返回文章
    返回