留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑界面效应的GFRP复合材料蠕变模型

张尧 朱四荣 陆士平 吕泳 陈建中

张尧, 朱四荣, 陆士平, 等. 考虑界面效应的GFRP复合材料蠕变模型[J]. 复合材料学报, 2021, 38(11): 3682-3692. doi: 10.13801/j.cnki.fhclxb.20210119.001
引用本文: 张尧, 朱四荣, 陆士平, 等. 考虑界面效应的GFRP复合材料蠕变模型[J]. 复合材料学报, 2021, 38(11): 3682-3692. doi: 10.13801/j.cnki.fhclxb.20210119.001
ZHANG Yao, ZHU Sirong, LU Shiping, et al. Creep model of GFRP composites considering interface effect[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3682-3692. doi: 10.13801/j.cnki.fhclxb.20210119.001
Citation: ZHANG Yao, ZHU Sirong, LU Shiping, et al. Creep model of GFRP composites considering interface effect[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3682-3692. doi: 10.13801/j.cnki.fhclxb.20210119.001

考虑界面效应的GFRP复合材料蠕变模型

doi: 10.13801/j.cnki.fhclxb.20210119.001
基金项目: 中央高校基本科研业务费专项资金(2018IB001)
详细信息
    通讯作者:

    朱四荣,博士,教授,博士生导师,研究方向为复合材料力学  E-mail:zhusirong@whut.edu.cn

  • 中图分类号: TB332

Creep model of GFRP composites considering interface effect

  • 摘要: 建立了包含界面的玻璃纤维增强树脂复合材料(GFRP)蠕变混合率单胞模型,对GFRP的蠕变性能进行分析;并与GFRP在应力水平为初始弯曲强度的20%所对应的载荷下的弯曲蠕变实验结果进行对比。分析了界面模量、界面厚度、纤维连续性与形态以及位向等因素对复合材料蠕变性能的影响。结果表明:相较于不考虑界面效应的混合率模型,本模型具有更高的准确性,与实验结果更为吻合;界面模量反应了纤维与基体的结合程度,对复合材料的蠕变性能产生影响,其蠕变柔量随着界面模量的增大而减小;界面厚度的增大会导致复合材料的蠕变柔量略微增大;相较于连续纤维增强树脂复合材料,短切纤维毡增强树脂复合材料的蠕变性能更易受到界面效应的影响;纤维方向对复合材料蠕变性能有显著影响,随着纤维方向角的增大,复合材料蠕变柔量增大,但当纤维方向角达到60°后,纤维已基本失去载荷传递和增强能力,复合材料蠕变柔量不再继续随着纤维方向角的增大而增大。

     

  • 图  1  蠕变实验装置

    Figure  1.  Creep test apparatus

    图  2  HKK蠕变模型

    Figure  2.  HKK creep model

    Ei—Elasitic modulus; $\eta_i$ —Viscosity coefficient

    图  3  连续纤维增强树脂复合材料单胞模型

    Figure  3.  Unit cell model of continuous fiber reinforced resin composite

    图  4  连续纤维增强树脂复合材料面内剪切模量计算模型

    Figure  4.  In-plane shear modulus calculation model of continuous fiber reinforced resin composite

    图  5  非连续纤维增强树脂复合材料单胞模型

    Figure  5.  Unit cell model of discontinuous fiber reinforced resin composite

    图  6  树脂基体蠕变柔量CR随时间变化曲线

    Figure  6.  Curve of creep compliance of resin matrix CR vs. time

    图  7  FWC/R试样蠕变柔量CFWC实验值与计算值结果对比

    Figure  7.  Comparison of experimental and calculated creep compliance values CFWC of FWC/R

    图  9  RCW/R试样蠕变柔量CRCW实验值与计算结果对比

    Figure  9.  Comparison of experimental and calculated creep compliance values CRCW of RCW/R

    图  10  CSM/R蠕变柔量CCSM实验值与计算结果对比

    Figure  10.  Comparison of experimental and calculated creep compliance values CCSM of CSM/R

    图  8  FWA/R试样蠕变柔量CFWA实验值与计算值结果对比

    Figure  8.  Comparison of experimental and calculated creep compliance values CFWA of FWA/R

    图  11  FWC/R蠕变柔量与界面模量的关系

    Figure  11.  Creep compliance of FWC/R vs. interface modulus

    图  12  CSM/R蠕变柔量与界面模量的关系

    Figure  12.  Creep compliance of CSM/R vs. interface modulus

    图  13  FWC/R蠕变柔量与界面厚度的关系

    Figure  13.  Creep compliance of FWC/R vs. interfacial thickness

    图  14  CSM/R蠕变柔量与界面厚度的关系

    Figure  14.  Creep compliance of CSM/R vs. interfacial thickness

    图  15  FWC/R与CSM/R蠕变柔量计算值对比

    Figure  15.  Comparison of the calculating value of the creep compliance of sample FWC/R and CSM/R

    图  16  连续纤维增强树脂复合材料(FW/R)蠕变柔量与纤维方向的关系

    Figure  16.  Creep compliance of filament wound/resin composite (FW/R) vs. fiber orientation

    图  17  FW/R初始偏轴模量与纤维方向的关系

    Figure  17.  Initial offset modulus of FW/R vs. fiber orientation

    表  1  玻璃纤维增强树脂复合材料(GFRP)试样初始强度及树脂质量分数

    Table  1.   Initial strength and resin mass fraction of glass fiber reinforced polymer (GFRP) samples

    Sampleσb/MPaWt/%
    FWC/R 932.8 28
    FWA/R 40 28
    RCW/R 74.5 32
    CSM/R 165.8 70
    Notes: FWC/R—Filament wound (circumferential)/resin composites; FWA/R—Filament wound (axial)/resin composites; RCW/R—Reciprocating cross wound/resin composites; CSM/R—Chopped strand mat/resin composites; σb—Initial strength; Wt—Resin mass fraction.
    下载: 导出CSV
  • [1] 刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40(4):1-16.

    LIU W Q, FANG H, FANG Y. Research progress of fiber-reinforced composites and structures[J]. Journal of Building Structures,2019,40(4):1-16(in Chinese).
    [2] BERARDI V P, PERRELLA M, FEO L, et al. Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modeling[J]. Composites Part B: Engineering,2017,122B(8):136-144.
    [3] ZHANG X, HUANG Q, CHEN J, et al. Prediction of viscoelastic behavior of unidirectional polymer matrix composites[J]. Journal of Wuhan University of Technology (Materials Science),2016,31(3):695-699. doi: 10.1007/s11595-016-1431-7
    [4] 梁军, 杜善义. 黏弹性复合材料力学性能的细观研究[J]. 复合材料学报, 2001, 18 (1):97-100. doi: 10.3321/j.issn:1000-3851.2001.01.023

    LIANG J, DU S Y. Study of mechanical properties of viscoelastic matrix composite by micromechanics[J]. Acta Materiae Compositae Sinica,2001,18 (1):97-100(in Chinese). doi: 10.3321/j.issn:1000-3851.2001.01.023
    [5] 钟轶峰, 杨旦旦, 周小平, 等. 聚合物基复合材料有效蠕变响应与单轴拉伸行为的细观力学模拟[J]. 复合材料学报, 2016, 33(12):2911-2917.

    ZHONG Y F, YANG D D, ZHOU X P, et al. Effective creep response and uniaxial tension behavior of polymer matrix composites simulated by mesomechanics[J]. Acta Materiae Compositae Sinica,2016,33(12):2911-2917(in Chinese).
    [6] NEDJAR B. Modeling long-term creep rupture by debonding in unidirectional fibre-reinforced composites[J]. International Journal of Solids Structure 2014, 51(10): 1962-1969.
    [7] BERARDI V P, MANCUSI G. A mechanical model for predicting the long term behavior of reinforced polymer concretes[J]. Mechanics Research Communications,2013,50:1-7. doi: 10.1016/j.mechrescom.2013.02.001
    [8] NEDJAR B. Directional damage gradient modeling of fiber/matrix debonding in viscoelastic UD composites[J]. Composite Structures,2016,153(10):895-901.
    [9] CHEVALI V S, JANOWSKI G M. Flexural creep of long fiber-reinforced thermoplastic composites: Effect of processing-dependent fiber variables on creep response[J]. Composites Part A: Applied Science and Manufacturing,2010,41(9):1253-1262. doi: 10.1016/j.compositesa.2010.05.008
    [10] PULNGERN T, CHITSAMRAN T, CHUCHEEP-SAKUL S, et al. Effect of temperature on mechanical properties and creep responses for wood/PVC composites[J]. Construction and Building Materials,2016,111:191-198. doi: 10.1016/j.conbuildmat.2016.02.051
    [11] 梁娜, 朱四荣, 陈建中. 一种新的聚合物基复合材料应力松弛经验模型[J]. 复合材料学报, 2017, 34(10):2205-2210.

    LIANG N, ZHU S R, CHAN J Z, et, al. A new empirical model for stress relaxation of polymer matrix[J]. Acta Materiae Compositae Sinica,2017,34(10):2205-2210(in Chinese).
    [12] 张小玉, 黄乾钰, 陈建中, 等. 聚合物基复合材料单向板黏弹性模型[J]. 华中科技大学学报: 自然科学版, 2015, 43(01):30-33.

    ZHANG X Y, HUANG Q Y, CHEN J Z, et al. The viscoelastic model of PMC unidirectional plates[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2015,43(01):30-33(in Chinese).
    [13] MIYANO Y, NAKADA M, ICHIMURA J, et al. Accelerated testing for long-term strength of innovative CFRP laminates for marine use[J]. Composites Part B: Engineering, 2008, 39(1): 5-12.
    [14] MASOUMI S, SALEHI M, AKHLAGHI M. Nonlinear viscoelastic analysis of laminated composite plates-a multi scale approach[J]. International Journal of Recent Advances in Mechanical Engineering,2013,2(2):11-18.
    [15] 梁基照. 聚合物复合材料界面层厚度的估算[J]. 合成橡胶工业, 1999(05):285-287.

    LIANG J Z. Estimation of interlayer thickness of polymer composites[J]. China Synthetic Rubber Industry,1999(05):285-287(in Chinese).
    [16] TOTRY E, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C, et al. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites[J]. Composites Science and Technology,2010,70(6):970-980. doi: 10.1016/j.compscitech.2010.02.014
    [17] WANG J, BEYERLEIN I J, MARA N A, et al. Interface-facilitated deformation twinning in copper within submicron Ag–Cu multilayered composites[J]. Scripta Materialia,2011,64(12):1083-1086. doi: 10.1016/j.scriptamat.2011.02.025
    [18] ZHANG Y, WU G. Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites[J]. Rare Metals,2010,29(1):102-107. doi: 10.1007/s12598-010-0018-2
    [19] ZHANG R L, HUANG Y D, LIU L, et al. Effect of the molecular weight of sizing agent on the surface of carbon fibres and interface of its composites[J]. Applied Surface Science,2011,257(6):1840-1844. doi: 10.1016/j.apsusc.2010.08.102
    [20] ZHANG Y H, WU G H. Interface and thermal expansion of carbon fiber reinforced aluminum matrix composites[J]. Transactions of Nonferrous Metals Society of China,2010,20(11):2148-2151. doi: 10.1016/S1003-6326(09)60433-7
    [21] UDAYAKUMAR A, BALASUBRAMANIAN M, GOPALA H B, et al. Influence of the type of interface on the tribological characteristics of ICVI generated SiCf/SiC composites[J]. Wear,2011,271(5-6):859-865. doi: 10.1016/j.wear.2011.03.029
    [22] 田君, 钟守炎, 石子琼, 等. 界面对硅酸铝短纤维增强AZ91D镁基复合材料蠕变性能的影响[J]. 复合材料学报, 2014, 31(04):955-962.

    TIAN J, ZHONG S Y, SHI Z Q, et al. Interface effects on creep properties of aluminum silicate short fiber reinforced AZ91D magnesium matrix composites[J]. Acta Materiae Compositae Sinica,2014,31(04):955-962(in Chinese).
    [23] 姜云鹏, 岳珠峰, 万建松. 界面特性对短纤维金属基复合材料蠕变行为的影响[J]. 计算力学学报, 2003(6):743-748. doi: 10.3969/j.issn.1007-4708.2003.06.016

    JIANG Y P, YUE Z F, WAN J S. On the study of the influence of the interphase properties on the creep behavior of short fiber enforced metal matrix composites[J]. Chinese Journal of Computational Mechanics,2003(6):743-748(in Chinese). doi: 10.3969/j.issn.1007-4708.2003.06.016
    [24] 梁娜, 朱四荣, 陈建中. 聚合物基复合材料在低应力下的蠕变模型[C]//第二十一届全国玻璃钢/复合材料学术年会论文集(《玻璃钢/复合材料》2016增刊). 玻璃钢/复合材料, 2016: 4.

    LIANG N, ZHU S R, CHEN J Z. Creep model of polymer matrix composites under low stress[C]//21th Annual Academic Conference on FRP/CM. Fiber Reinforced Plastics/Composites, 2016: 4(in Chinese).
    [25] 王耀先. 复合材料力学与结构设计[M]. 上海: 华东理工大学出版社, 2012: 28-38.

    WANG Y X. Echanics and structural design of composite materials[M]. Shanghai: East China University of Science and Technology Press, 2012: 28-38(in Chinese).
    [26] MAI K, MDÄER E, MÜHLE M. Interphase characterization in composites with new non-destructive methods[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29: 1111-1119.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  1228
  • HTML全文浏览量:  477
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 录用日期:  2021-01-08
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回