留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械力诱导双重交联各向异性纤维素水凝胶的制备与性能

张坤杰 徐朝阳

张坤杰, 徐朝阳. 机械力诱导双重交联各向异性纤维素水凝胶的制备与性能[J]. 复合材料学报, 2022, 39(2): 718-725. doi: 10.13801/j.cnki.fhclxb.20210414.001
引用本文: 张坤杰, 徐朝阳. 机械力诱导双重交联各向异性纤维素水凝胶的制备与性能[J]. 复合材料学报, 2022, 39(2): 718-725. doi: 10.13801/j.cnki.fhclxb.20210414.001
ZHANG Kunjie, XU Zhaoyang. Preparation and properties of mechanically induced double crosslinked anisotropic cellulose hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 718-725. doi: 10.13801/j.cnki.fhclxb.20210414.001
Citation: ZHANG Kunjie, XU Zhaoyang. Preparation and properties of mechanically induced double crosslinked anisotropic cellulose hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 718-725. doi: 10.13801/j.cnki.fhclxb.20210414.001

机械力诱导双重交联各向异性纤维素水凝胶的制备与性能

doi: 10.13801/j.cnki.fhclxb.20210414.001
基金项目: 国家自然科学基金(31770607)
详细信息
    通讯作者:

    徐朝阳,博士,教授,博士生导师,研究方向为生物质纳米材料  E-mail: zhaoyangxunjfu@hotmail.com

  • 中图分类号: TB332

Preparation and properties of mechanically induced double crosslinked anisotropic cellulose hydrogel

  • 摘要: 为改善传统纤维素水凝胶材料柔软易碎的性质,拓宽其应用领域,开发出具有优异力学性能的纤维素水凝胶,在LiOH-尿素体系中溶解纤维素后,先加入环氧氯丙烷制备出具有松散化学交联网络结构的纤维素水凝胶,再通过在酸溶液去除碱-尿素包裹体系后形成物理交联,获得具有初步取向的双交联纤维素水凝胶;在此基础上,沿长度方向调控机械力拉伸固定双网络结构水凝胶,获得不同力学性能的各向异性纤维素水凝胶。研究表明:经拉伸后水凝胶最大拉伸强度可达2.96 MPa,纤维素水凝胶在偏振光下出现彩色偏光现象,表现出典型的光学各向异性;通过该方法可构建出具有高强度、光学各向异性的纤维素水凝胶,该类水凝胶在智能软物质等领域具有良好的应用前景。

     

  • 图  1  化学交联纤维素水凝胶(CCH)和双交联纤维素水凝胶(DCH)制备机制

    Figure  1.  Preparation mechanism of chemically cross-linked cellulose hydrogel (CCH) and double cross-linked cellulose hydrogel (DCH)

    x%DCH(x=50, 70, 100)—DCH with tensile ratio of x%

    图  2  不同条件下纤维素水凝胶的SEM图像

    Figure  2.  SEM images of cellulose hydrogels under different conditions

    图  3  CCH和DCH在外力作用下的外观

    Figure  3.  Appearance of CCH and DCH under external force

    图  4  纤维素水凝胶的拉伸应力-应变曲线 (a) 和70%DCH的循环拉伸应力-应变曲线 (b)

    Figure  4.  Tensile stress-strain curves of cellulose hydrogel (a) and 70%DCH circulatory stretch stress-strain curves (b)

    图  5  纤维素水凝胶的FTIR图谱

    Figure  5.  FTIR spectra of cellulose hydrogels

    图  6  CCH与DCH在交叉偏振片之间的照片

    Figure  6.  Photographs of CCH and DCH between crossed polarizers

    表  1  在不同条件下制备的水凝胶的力学性能和含水量

    Table  1.   Mechanical properties and water contents of hydrogels prepared under different conditions

    SampleWater
    content/%
    Tensile
    strength/MPa
    Elongation/
    %
    Tensile
    modulus/MPa
    Fracture
    toughness/(J·m−2)
    CCH 98.0 0.04±0.02 39±2.5 0.03±0.01 0.72±0.23
    DCH 88.9 1.73±0.52 118±1.3 0.59±0.17 95.62±10.21
    50%DCH 90.3 2.01±0.78 83±9.0 0.97±0.26 71.38±9.56
    70%DCH 91.2 2.68±0.73 64±5.9 2.13±0.19 86.00±9.72
    100%DCH 89.2 2.96±0.50 43±6.4 4.09±0.25 101.74±10.64
    Note: x%DCH—DCH with stretching ratio of x.
    下载: 导出CSV
  • [1] PEPPAS N A, HILT J Z, KHADEHOSSEINI A, et al. Hydrogels in biology and medicine: From molecular principles to bionanotechnology[J]. Advanced Materials,2006,18(11):1345-1360. doi: 10.1002/adma.200501612
    [2] LEE K Y, MOONEY D J. Hydrogels for tissue engineering[J]. Chemical Reviews,2001,101(7):1869-1880. doi: 10.1021/cr000108x
    [3] TAYLOR D L, MARC I H P. Self-healing hydrogels[J]. Advanced Materials,2016,28(41):9060-9093. doi: 10.1002/adma.201601613
    [4] KIM H N, HWANG N S, KIM M S, et al. Nanotopography-guided tissue engineering and regenerative medicine[J]. Advanced Drug Delivery Reviews,2013,65(4):536-558.
    [5] 黄进. 生物基聚多糖纳米晶: 化学及应用[M]. 北京: 化学工业出版社, 2015: 7.

    HUANG Jin. Bio-based polysaccharide nanocrystals: Chemistry and application[M]. Beijing: Chemical Industry Press, 2015: 7.
    [6] ELLIOTT G F, ROME E M. Liquid-crystalline aspects of muscle fibers[J]. Molecular Crystals and Liquid Crystals,1969,8(1):215-218.
    [7] 杨蕊, 曹清华, 梅长彤, 等. 高孔隙率三维结构木材构建功能复合材料的研究进展[J]. 复合材料学报, 2020, 37(8):1796-1804.

    YANG Rui, CAO Qinghua, MEI Changtong, et al. Research progress of functional composite materials con-structed from high porosity three-dimensional structural wood[J]. Acta Materiae Compositae Sinica,2020,37(8):1796-1804(in Chinese).
    [8] LIU M, ISHIDA Y, EBINA Y, et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets[J]. Nature,2015,517(7532):68-72. doi: 10.1038/nature14060
    [9] MORALES D, BHARTI B, DICKEY M D, et al. Bending of responsive hydrogel sheets guided by field-assembled mi-croparticle endoskeleton structures[J]. Small,2016,12(7):2283-2290.
    [10] SHIKINAKA K, KOIZUMI Y, SHIGEHARA K. Mechanical/optical behaviors of imogolite hydrogels depending on their compositions and oriented structures[J]. Journal of Applied Polymer Science,2015,132(12):675-691.
    [11] DECILLE S, SAIZ E, NALLA R K, et al. Freezing as a path to build complex composites[J]. Science,2006,311(5760):515-518. doi: 10.1126/science.1120937
    [12] WEGST U G, SCHECTER M, DONIUS A E, et al. Bio-materials by freeze casting[J]. Philosophical Transactions of the Royal Society B-biological Sciences,2010,368(1917):2099-2121.
    [13] 李泽, 何文, 强瀚, 等. 定向重组竹纤维素纤维/酚醛树脂复合材料的制备及其性能[J]. 复合材料学报, 2021, 38(10):3228-3236.

    LI Ze, HE Wen, QIANG Han, et al. Preparation and properties of directionally reconstituted bamboo cellulose fiber/phenolic resin composites[J]. Acta Materiae Compositae Sinica,2021,38(10):3228-3236(in Chinese).
    [14] WEGSTU G, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. doi: 10.1038/nmat4089
    [15] BAI H, POLINI A, DELATTRE B, et al. Thermoresponsive composite hydrogels with aligned microporous structure by ice-templated assembly[J]. Chemistry of Materials,2013,25(22):4551-4556. doi: 10.1021/cm4025827
    [16] TAMESUE S, OHTANI M, YAMADA K, et al. Linear versus dendritic molecular binders for hydrogel network formation with clay nanosheets: Studies with ABA triblock copolyethers carrying guanidinium ion pendants[J]. Journal of the American Chemical Society,2013,135(41):15650-15655. doi: 10.1021/ja408547g
    [17] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials,2020,15(14):1155-1158.
    [18] ZHOU J, DU X W, GAO Y, et al. Aromatic-aromatic interactions enhance interfiber contacts for enzymatic formation of a spontaneously aligned supramolecular hydrogel[J]. Journal of the American Chemical Society,2014,136(8):2970-2973. doi: 10.1021/ja4127399
    [19] LI I C, HARTGERINK J D. Covalent capture of aligned self-assembling nanofibers[J]. Journal of the American Chemical Society,2017,139(23):8044-8050. doi: 10.1021/jacs.7b04655
    [20] ZHAO X H. Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks[J]. Soft Matter,2014,10(5):672-687. doi: 10.1039/C3SM52272E
    [21] PEI Y, YE D D, ZHAO Q, et al. Effectively promoting wound healing with cellulose/gelatin sponges constructed directly from a cellulose solution[J]. Journal of Materials Chemistry B,2015,3(38):7518-7528.
    [22] XU D F, FAN L, GAO L F, et al. Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration[J]. ACS Applied Materials & Interfaces,2016,8(27):17090-17097.
    [23] ZHAO D, HUANG J C, ZHONG Y, et al. High-strength and high-toughness double-cross-linked cellulose hydrogels: A new strategy using sequential chemical and physical cross-linking[J]. Advanced Functional Materials,2016,26(34):6279-6287. doi: 10.1002/adfm.201601645
    [24] ZHU M W, SONG J W, LI T, et al. Highly anisotropic, highly transparent wood composites[J]. Advanced Materials,2016,28(26):5181-5187. doi: 10.1002/adma.201600427
    [25] ZHU M W, WANG Y L, ZHU S Z, et al. Anisotropic, transparent films with aligned cellulose nanofibers[J]. Advanced Materials,2017,29(21):1606284.
    [26] TSENG P, NAPIER B, ZHAO S, et al. Directed assembly of bio-inspired hierarchical materials with controlled nano-fibrillar architectures[J]. Nature Nanotechnology,2017,12(5):474-480. doi: 10.1038/nnano.2017.4
    [27] CAI J, ZHANG L N. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions[J]. Macromolecular Bioscience,2005,5(130):539-548.
    [28] YE D D, YANG P C, LEI X J, et al. Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth[J]. Chemistry of Materials,2018,30:5175-5183. doi: 10.1021/acs.chemmater.8b01799
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1346
  • HTML全文浏览量:  641
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-04-07
  • 录用日期:  2021-04-08
  • 网络出版日期:  2021-04-14
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回